Have a personal or library account? Click to login
Predicting Mechanical Strength and Optimized Parameters in FDM-Printed Polylactic Acid Parts Via Artificial Neural Networks and Desirability Analysis Cover

Predicting Mechanical Strength and Optimized Parameters in FDM-Printed Polylactic Acid Parts Via Artificial Neural Networks and Desirability Analysis

Open Access
|Sep 2024

References

  1. S. Fafenrot, N. Grimmelsmann, M. Wortmann, and A. Ehrmann, “Three-dimensional (3D) printing of polymer-metal hybrid materials by fused deposition modeling,” Materials, vol. 10, 2017, pp. 1199. https://doi.org/10.3390/ma10101199
  2. S. M. Ahmad and S. Y. Ezdeen, “Effect of coating on the specific properties and damping loss parameter of ultem 1010,” Zanco J. Pure Appl, Sci., vol. 33, 2021, pp. 105-116. https://doi.org/10.21271/ZJPAS.33.2.10
  3. T. Abbas, F. M. Othman, and H. B. Ali, “Effect of infill Parameter on compression property in FDM Process,” Dimensions, vol. 12, 2017, pp. 24-25. https://doi.org/10.9790/9622-0710021619
  4. F. A. Naser and M. T. Rashid, “The Influence of Concave Pectoral Fin Morphology in the Performance of Labriform Swimming Robot,” Iraqi J. Electr. Electron. Eng., vol. 16, 2020, pp. 54-61. https://doi.org/10.37917/ijeee.16.1.7
  5. A.K. Sood, R.K. Ohdar, S.S. Mahapatra, “Improving dimensional accuracy of fused deposition modeling processed part using grey Taguchi method,” Mater Des, vol. 30, no. 10, 2009, pp. 4243-4252. https://doi.org/10.1016/j.matdes.2009.04.030
  6. K. Kun, “Reconstruction and development of a 3D printer using FDM technology,” Procedia Engineering, vol. 149, 2016, pp. 203-211. https://doi.org/10.1016/j.proeng.2016.06.657
  7. N.A. Aldeen, B.A. Sadkhan, and B. Owaid, “Hand bone orthosis manufacturing using 3d printing technology,” J. Eng. Sustain. Dev., vol. 24, 2020, pp. 451-458. https://doi.org/10.31272/jeasd.conf.1.50
  8. Y.F. Buys, A.N.A. Aznan, and H. Anuar, “Mechanical properties, morphology, and hydrolytic degradation behavior of polylactic acid/natural rubber blends,” in IOP Conference Series: Materials Science and Engineering, vol. 290, 2018, p. 012077. https://doi.org/10.1088/1757-899X/290/1/012077
  9. M. Rismalia, S.C. Hidajat, I.G.R. Permana, B. Hadisujoto, M. Muslimin, and F. Triawan, “Infill pattern and density effects on the tensile properties of 3D printed PLA material,” in Journal of Physics: Conference Series, vol. 1402, 2019, p. 44041. https://doi.org/10.1088/1742-6596/1402/4/044041
  10. T. Raj. “Investigation of Parameter-Property Relationship in Material Extrusion Additive Manufacturing.” PhD thesis, Department of Mechanical Engineering, Faculty of Engineering Dayalbagh Educational Institute, Dayalbagh, Agra (UP) – 282005, 2023.
  11. B. Das, S. Roy, R.N. Rai, and S.C. Saha, “Studies on effect of cutting parameters on surface roughness of Al- Cu-Tic Mmcs: An Artificial Neural Network Approach,” International Conference on Advanced Computing Technologies and Applications, 2015, pp. 745-752. http://doi.org/10.1016/j.procs.2015.03.145
  12. N. Hopkinson, R. Hague, and P. Dickens. Rapid Manufacturing: An Industrial Revolution for the Digital Age. Wiley, England, 2005.
  13. A. Pilipović, P. Raos, and M. Šercer, “Experimental analysis of properties of materials for rapid prototyping,” The International Journal of Advanced Manufacturing Technology, vol. 40, 2009, pp. 105-115. https://doi.org/10.1007/s00170-007-1310-7
  14. J. Borah and M. Chandrasekaran, “Experimental investigation and development of Artificial neural network modeling of 3D printed PEEK bio implants and its optimization,” Research Square, 2023. https://doi.org/10.21203/rs.3.rs-3204960/v1.
  15. S. Sivarao et al., “Predictive Modeling Of Dimensional Accuracies In 3d Printing Using Artificial Neural Network,” Journal of Engineering Science and Technology, vol. 18, no. 4, 2023, pp. 2148-2160.
  16. S. Chinchanikar et al., “ANN modelling of surface roughness of FDM parts considering the effect of hidden layers, neurons, and process parameters,” Advances in Materials and Processing Technologies, 2022. https://doi.org/10.1080/2374068X.2022.2091085
  17. F.M. Monticeli, R.M. Neves, H.L. Ornaghi Jr., and J.H.S. Almeida Jr., “Prediction of Bending Properties for 3D-Printed Carbon Fibre/Epoxy Composites with Several Processing Parameters Using ANN and Statistical Methods,” Polymers, vol. 14, 2022, p. 3668. https://doi.org/10.3390/polym14173668.
  18. I. Milićević et al., “Improving the Mechanical Characteristics of the 3D Printing Objects using Hybrid Machine Learning Approach,” FACTA UNIVERSITATIS Series: Mechanical Engineering, 2022. https://doi.org/10.22190/FUME220429036M.
  19. A.K. Gupta and M. Taufik, “Improvement of part strength prediction modelling by artificial neural networks for filament and pellet based additively manufactured parts,” Australian Journal of Mechanical Engineering, 2022. https://doi.org/10.1080/14484846.2022.2047472
  20. M. Abas, T. Habib, S. Noor, B. Salah, and D. Zimon, “Parametric Investigation and Optimization to Study the Effect of Process Parameters on the Dimensional Deviation of Fused Deposition Modeling of 3D Printed Parts,” Polymers, vol. 14, 2022. https://doi.org/10.3390/polym14173667.
  21. A.D. Tura, H.B. Mamo, Y.D. Jelila, and H.G. Lemu, “Experimental investigation and ANN prediction for part quality improvement of fused deposition modeling parts,” COTech & OGTech 2021, IOP Conf. Series: Materials Science and Engineering, vol. 1201, 2021, p. 012031. https://doi.org/10.1088/1757-899X/1201/1/012031
  22. A. Dey and N. Yodo, “A systematic survey of FDM process parameter optimization and their influence on part characteristics,” J. Manuf. Mater. Process., vol. 3, no. 3, 2019, p. 64. https://doi.org/10.3390/jmmp3030064
  23. S.K. Padhi et al., “Optimization of fused deposition modeling process parameters using a fuzzy inference system coupled with Taguchi philosophy,” Adv. Manuf., vol. 5, 2017, pp. 231-242. https://doi.org/10.1007/s40436-017-0187-4
  24. V. Kumar and A. Kumar, “Improved bio bleaching of mixed hardwood pulp and process optimization using novel GA-ANN and GA-ANFIS hybrid statistical tools,” Bioresour. Technol., vol. 271, 2018, pp. 274-282. https://doi.org/10.1016/j.biortech.2018.09.115
  25. J.P. Patel, C.P. Patel, U.J. Patel, “A review on various approaches for process parameter optimization of fused deposition modeling (FDM) process and Taguchi approach for optimization,” International Journal Engineering Research and Application, vol. 2, no. 2, 2012, pp. 361-5.
  26. J.M. Mercado-Colmenero et al., “A numerical and experimental study of the compression uniaxial properties of PLA manufactured with FDM technology based on product specifications,” Int J Adv Manuf Technol, vol. 103, pp. 1893-1909, 2019. https://doi.org/10.1007/s00170-019-03626-0
  27. H.H. Abdulridha, T.F. Abbas, “Analysis and Investigation the Effect of the Printing Parameters on the Mechanical and Physical Properties of PLA Parts Fabricated via FDM Printing,” Advances in Science and Technology Research Journal, vol. 17, no. 6, 2023, pp. 49-62. https://doi.org/10.12913/22998624/173562
  28. S.A. Oudah, H.B. Al-Attraqchi, N.A. Nassir, “The Effect of Process Parameters on the Compression Property of Acrylonitrile Butadiene Styrene Produced by 3D Printer,” J. Eng. Technol., vol. 40, 2022, pp. 189-194. http://doi.org/10.30684/etj.v40i1.2118
  29. J.M. Zurada. Introduction to Artificial Neural Systems. St. Paul: West Publishing Company, 1992, pp. 1-764.
DOI: https://doi.org/10.2478/mspe-2024-0040 | Journal eISSN: 2450-5781 | Journal ISSN: 2299-0461
Language: English
Page range: 428 - 437
Submitted on: Jan 1, 2024
Accepted on: Jul 1, 2024
Published on: Sep 5, 2024
Published by: STE Group sp. z.o.o.
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2024 Hind H. Abdulridha, Tahseen F. Abbas, Aqeel S. Bedan, published by STE Group sp. z.o.o.
This work is licensed under the Creative Commons Attribution 4.0 License.