Have a personal or library account? Click to login
Clustering Based Heuristics for Aligning Master Production Schedule and Delivery Schedule Cover

Clustering Based Heuristics for Aligning Master Production Schedule and Delivery Schedule

Open Access
|Sep 2024

References

  1. M. Stevenson, L.C. Hendry, and B.G. Kingsman, “A review of production planning and control: the applicability of key concepts to the make-to-order industry,” International Journal of Production Research, vol. 43, no. 5, pp. 869-898, 2005. DOI:<a href="https://doi.org/10.1080/0020754042000298520" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/0020754042000298520</a>
  2. C.C. Teo, R. Bhatnagar, and S.C. Graves, “An application of master schedule smoothing and planned lead time control,” Production and Operations Management, vol. 21, no. 2, pp. 211-223, 2012. DOI:<a href="https://doi.org/10.1111/j.1937-5956.2011.01263.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/j.1937-5956.2011.01263.x</a>
  3. J. Jiao, L. Zhang, and S. Pokharel, “Coordinating product and process variety for mass customized order fulfillment,” Production Planning and Control, vol. 16, no. 6 (Spec. Iss.), pp. 608-620, 2005. DOI:<a href="https://doi.org/10.1080/09537280500112181" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/09537280500112181</a>
  4. M. Brettel, D. Bendig, M. Keller, N. Friederichsen, and M. Rosenberg, “Effectuation in manufacturing: How entrepreneurial decision-making techniques can be used to deal with uncertainty in manufacturing,” Procedia CIRP, vol. 17, pp. 611-616, 2014. DOI:<a href="https://doi.org/10.1016/j.procir.2014.03.119" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.procir.2014.03.119</a>
  5. E. Guzman, B. Andres, and R. Poler, “Matheuristic Algorithms for Production Planning in Manufacturing Enterprises,” in IFIP Advances in Information and Communication Technology, vol. 626, pp. 115-122, 2021. DOI:<a href="https://doi.org/10.1007/978-3-030-78288-7_11" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-030-78288-7_11</a>
  6. S. Naima, S. Nguyen, K. Cullinane, V. Gekara, and P. Chhetri, “Forecasting container freight rates using the Prophet forecasting method,” Transport Policy, vol. 133, pp. 86-107, 2023. DOI:<a href="https://doi.org/10.1016/j.tranpol.2023.01.012" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.tranpol.2023.01.012</a>
  7. I. Supriyanto and B. Noche, “Fuzzy multi-objective linear programming and simulation approach to the development of valid and realistic master production schedule,” in Logistics Journal: Proceedings, vol. 7, no. 1, pp. 1-14, 2011. DOI:<a href="https://doi.org/10.2195/LJ_proc_supriyanto_de_201108_01" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2195/LJ_proc_supriyanto_de_201108_01</a>
  8. X. Zhao, J. Xie, and Q. Jiang, “Lot‐sizing rule and freezing the master production schedule under capacity constraint and deterministic demand,” Production and Operations Management, vol. 10, no. 1, pp. 45-67, 2001. DOI:<a href="https://doi.org/10.1111/j.1937-5956.2001.tb00067.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1111/j.1937-5956.2001.tb00067.x</a>
  9. J.C. Serrano-Ruiz, J. Mula, and R. Poler, “Smart master production schedule for the supply chain: a conceptual framework,” Computers, vol. 10, no. 12, p. 156, 2021. DOI:<a href="https://doi.org/10.3390/computers10120156" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/computers10120156</a>
  10. O. Tang and R.W. Grubbström, “Planning and replanning the master production schedule under demand uncertainty,” International Journal of Production Economics, vol. 78, pp. 145-152, 2002. DOI:<a href="https://doi.org/10.1016/S0925-5273(00)00100-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0925-5273(00)00100-6</a>
  11. G.E. Vieira and F. Favaretto, “A new and practical heuristic for master production scheduling creation,” International Journal of Production Research, vol. 44, no. 18-19, pp. 3607-3625, 2006. DOI:<a href="https://doi.org/10.1080/00207540600818187" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/00207540600818187</a>
  12. M. Albrecht, J. Rhode, and M. Wagner, “Master planning,” in Supply Chain Management and Advanced Planning: Concepts, Models, Software and Case Studies, H. Stadtler and C. Kilger, Eds. 4th ed., Springer, Berlin, pp. 161-179, 2015. DOI:<a href="https://doi.org/10.1007/978-3-642-55309-7_8." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-642-55309-7_8.</a>
  13. M.R.A. Bakar, I.T. Abbas, M.A. Kalal, H.A. AlSattar, A.G.K. Bakhayt, and B.A. Kalaf, “Solution for multi-objective optimization master production scheduling problems based on swarm intelligence algorithms,” Journal of Computational and Theoretical Nanoscience, vol. 14, no. 11, pp. 5184-5194, 2017. DOI:<a href="https://doi.org/10.1166/jctn.2017.6729" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1166/jctn.2017.6729</a>
  14. K.E. Stecke and X. Zhao, “Production and transportation integration for a make-to-order manufacturing company with a commit-to-delivery business mode,” Manufacturing & Service Operations Management, vol. 9, no. 2, pp. 206-224, 2007. DOI:<a href="https://doi.org/10.1287/msom.1060.0138" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1287/msom.1060.0138</a>
  15. A. Cakravastia and K. Takahashi, “Integrated model for supplier selection and negotiation in a make-to-order environment,” International Journal of Production Research, vol. 42, no. 21, pp. 4457-4474, 2004. DOI:<a href="https://doi.org/10.1080/00207540410001727622" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/00207540410001727622</a>
  16. F. Sahin, E.P. Robinson, and L.L. Gao, “Master production scheduling policy and rolling schedules in a two-stage make-to-order supply chain,” International Journal of Production Economics, vol. 115, no. 2, pp. 528-541, 2008. DOI:<a href="https://doi.org/10.1016/j.ijpe.2008.05.019" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ijpe.2008.05.019</a>
  17. M. Ebadian, M. Rabbani, S.A. Torabi, and F. Jolai, “Hierarchical production planning and scheduling in make-to-order environments: reaching short and reliable delivery dates,” International Journal of Production Research, vol. 47, no. 20, pp. 5761-5789, 2009. DOI:<a href="https://doi.org/10.1080/00207540802010799" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/00207540802010799</a>
  18. B.D. Neureuther, G.G. Polak, and N.R. Sanders, “A hierarchical production plan for a make-to-order steel fabrication plant,” Production Planning & Control, vol. 15, no. 3, pp. 324-335, 2004. DOI:<a href="https://doi.org/10.1080/09537280410001703893" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/09537280410001703893</a>
  19. L. Zhang and T.N. Wong, “Solving integrated process planning and scheduling problem with constructive meta-heuristics,” Information Sciences, vol. 340, pp. 1-16, 2016. DOI:<a href="https://doi.org/10.1016/j.ins.2016.01.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ins.2016.01.001</a>
  20. . Ekici, M. Elyasi, O.Ö. Özener, and M.B. Sarıkaya, “An application of unrelated parallel machine scheduling with sequence-dependent setups at Vestel Electronics,” Computers & Operations Research, vol. 111, pp. 130-140, 2019. DOI:<a href="https://doi.org/10.1016/j.cor.2019.06.007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.cor.2019.06.007</a>
  21. S.C. Nwanya, C.N. Achebe, O.O. Ajayi, and C.A. Mgbemene, “Process variability analysis in make-to-order production systems,” Cogent Engineering, vol. 3, no. 1, art. 1269382, 2016. DOI:<a href="https://doi.org/10.1080/23311916.2016.1269382" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/23311916.2016.1269382</a>
  22. X. Li and J.A. Ventura, “Exact algorithms for a joint order acceptance and scheduling problem,” International Journal of Production Economics, vol. 223, art. 107516, 2020. DOI:<a href="https://doi.org/10.1016/j.ijpe.2019.107516" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ijpe.2019.107516</a>
  23. X. Li, J.A. Ventura, and K.A. Bunn, “A joint order acceptance and scheduling problem with earliness and tardiness penalties considering overtime,” Journal of Scheduling, vol. 24, pp. 49-68, 2021. DOI:<a href="https://doi.org/10.1007/s10951-020-00672-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10951-020-00672-5</a>
  24. T.J. Ai and R.D. Astanti, “Coordinating Production and Delivery Schedule of Multi-Product and Multi-Customer through Mathematical Programming,” Applied System Innovation, vol. 5, no. 4, p. 59, 2022. DOI:<a href="https://doi.org/10.3390/asi5040059" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/asi5040059</a>
  25. T.E. Vollmann, W.L. Berry, D.C. Whybark, and F.R. Jacobs, “Manufacturing planning and control systems for supply chain management,” 5th ed., McGraw-Hill, New York, 2005.
  26. M. Ehrgott and X. Gandibleux, “A survey and annotated bibliography of multi-objective combinatorial optimization,” OR Spektrum, vol. 22, no. 4, pp. 425-460, 2000. DOI:<a href="https://doi.org/10.1007/s002910000046." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s002910000046.</a>
  27. A.A. Zaidan, B. Atiya, M.R. Abu Bakar, and B.B. Zaidan, “A new hybrid algorithm of simulated annealing and simplex downhill for solving multiple-objective aggregate production planning on a fuzzy environment,” Neural Computing and Applications, vol. 31, pp. 1823-1834, 2019. DOI:<a href="https://doi.org/10.1007/s00521-017-3159-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00521-017-3159-5</a>
  28. Z.J. Wu, W. Wang, J. Zhou, F.F. Ren, and C. Zhang, “Research on double objective optimization of master production schedule based on ant colony algorithm,” in Proceedings of the 2010 International Conference on Computational Intelligence and Security, Y. Wang and G. Ping, Eds., pp. 200-204, 2010. DOI:<a href="https://doi.org/10.1109/CIS.2010.49." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/CIS.2010.49.</a>
  29. S.S. Sadiq, A.M. Abdulazeez, and H. Haron, “Solving Multi-Objective Master Production Scheduling Model of Kalak Refinery System Using Hybrid Evolutionary Imperialist Competitive Algorithm,” Journal of Computer Science, vol. 16, no. 2, pp. 137-149, 2020. DOI:<a href="https://doi.org/10.3844/jcssp.2020.137.149." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3844/jcssp.2020.137.149.</a>
  30. S. Wattitham, T. Somboonwiwat, and S. Prombanpong, “Master production scheduling for the production planning in the pharmaceutical industry,” in Industrial Engineering, Management Science and Applications 2015, M. Gen, K. Kim, X. Huang, and Y. Hiroshi, Eds., Lecture Notes in Electrical Engineering, vol. 349, pp. 267-276, 2015. DOI:<a href="https://doi.org/10.1007/978-3-662-47200-2_30." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/978-3-662-47200-2_30.</a>
  31. G.E. Vieira and P.C. Ribas, “A new multi-objective optimization method for master production scheduling problems using simulated annealing,” International Journal of Production Research, vol. 42, no. 21, pp. 4609-4622, 2004. DOI:<a href="https://doi.org/10.1080/00207540410001733869" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/00207540410001733869</a>
  32. J.H. Blackstone, “APICS Dictionary,” 14th ed., APICS, Chicago, 2014.
  33. S.M. Easa, “Resource leveling in construction by optimization,” Journal of Construction Engineering and Management, vol. 115, no. 2, pp. 302-316, 1989. DOI:<a href="https://doi.org/10.1061/(ASCE)0733-9364(1989)115:2(302)" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1061/(ASCE)0733-9364(1989)115:2(302)</a>
  34. M. Bandelloni, M. Tucci, and R. Rinaldi, “Optimal resource leveling using non-serial dynamic programming,” European Journal of Operational Research, vol. 78, no. 2, pp. 162-177, 1994. DOI:<a href="https://doi.org/10.1016/0377-2217(94)90380-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/0377-2217(94)90380-8</a>
  35. J. Rieck, J. Zimmermann, and T. Gather, “Mixed-integer linear programming for resource leveling problems,” European Journal of Operational Research, vol. 221, no. 1, pp. 27-37, 2012. DOI:<a href="https://doi.org/10.1016/j.ejor.2012.03.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ejor.2012.03.003</a>
  36. J.P.U. Cadavid, S. Lamouri, B. Grabot, R. Pellerin, and A. Fortin, “Machine learning applied in production planning and control: a state-of-the-art in the era of industry 4.0,” Journal of Intelligent Manufacturing, vol. 31, pp. 1531-1558, 2020. DOI:<a href="https://doi.org/10.1007/s10845-019-01531-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10845-019-01531-7</a>
  37. E. Alpaydin, “Introduction to Machine Learning,” 2nd ed., MIT Press, Cambridge, 2010.
  38. R. Xu and D.C. Wunsch, “Clustering algorithms in biomedical research: a review,” IEEE Reviews in Biomedical Engineering, vol. 3, pp. 120-154, 2010. DOI:<a href="https://doi.org/10.1109/rbme.2010.2083647" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/rbme.2010.2083647</a>
  39. A.L. Fred and A.K. Jain, “Combining multiple clusterings using evidence accumulation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 6, pp. 835-850, 2005. DOI:<a href="https://doi.org/10.1109/TPAMI.2005.113" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/TPAMI.2005.113</a>
  40. A.K. Jain, M.N. Murty, and P.J. Flynn, “Data clustering: a review,” ACM Computing Surveys (CSUR), vol. 31, no. 3, pp. 264-323, 1999. DOI:<a href="https://doi.org/10.1145/331499.331504" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1145/331499.331504</a>
  41. T.W. Liao, “Clustering of time series data – a survey,” Pattern Recognition, vol. 38, no. 11, pp. 1857-1874, 2005. DOI:<a href="https://doi.org/10.1016/j.patcog.2005.01.025" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.patcog.2005.01.025</a>
  42. I. Bose and X. Chen, “Detecting the migration of mobile service customers using fuzzy clustering,” Information & Management, vol. 52, no. 2, pp. 227-238, 2015. DOI:<a href="https://doi.org/10.1016/j.im.2014.11.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.im.2014.11.001</a>
  43. S. Samoilenko and K.M. Osei-Bryson, “Representation matters: An exploration of the socio-economic impacts of ICT-enabled public value in the context of sub-Saharan economies,” International Journal of Information Management, vol. 49, pp. 69-85, 2019. DOI:<a href="https://doi.org/10.1016/j.ijinfomgt.2019.03.006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ijinfomgt.2019.03.006</a>
  44. W.B. Xie, Y.L. Lee, C. Wang, D.B. Chen, and T. Zhou, “Hierarchical clustering supported by reciprocal nearest neighbors,” Information Sciences, vol. 527, pp. 279-292, 2020. DOI:<a href="https://doi.org/10.1016/j.ins.2020.04.016" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.ins.2020.04.016</a>
  45. J. Han, J. Pei, and M. Kamber, “Data mining: concepts and techniques,” Elsevier, Amsterdam, 2011.
  46. S. Landau, M. Leese, D. Stahl, and B.S. Everitt, “Cluster analysis,” Wiley, Hoboken, 2011.
  47. A.E. Ezugwu, A.M. Ikotun, O.O. Oyelade, L. Abualigah, J.O. Agushaka, C.I. Eke, and A.A. Akinyelu, “A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects,” Engineering Applications of Artificial Intelligence, vol. 110, p. 104743, 2022. DOI:<a href="https://doi.org/10.1016/j.engappai.2022.104743" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.engappai.2022.104743</a>
  48. S. Anand, P. Padmanabham, A. Govardhan, and R. H. Kulkarni, “An extensive review on data mining methods and clustering models for an intelligent transportation system,” Journal of Intelligent Systems, vol. 27, no. 2, pp. 263-273, 2018. DOI:<a href="https://doi.org/10.1515/jisys-2016-0159" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1515/jisys-2016-0159</a>
  49. E.S. Negara and R. Andryani, “A review on overlapping and non-overlapping community detection algorithms for social network analytics,” Far East Journal of Electronics and Communications, vol. 18, no. 1, pp. 1-27, 2018.
  50. A. Delgoshaei, A. Delgoshaei, and A. Ali, “Evolution of clustering techniques in designing cellular manufacturing systems: A state-of-art review,” International Journal of Industrial Engineering Computations, vol. 10, no. 2, pp. 177-198, 2019. DOI:<a href="https://doi.org/10.5267/j.ijiec.2018.8.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.5267/j.ijiec.2018.8.002</a>
  51. K.R. Kashwan and C.M. Velu, “Customer segmentation using clustering and data mining techniques,” International Journal of Computer Theory and Engineering, vol. 5, no. 6, pp. 856-861, 2013. DOI:<a href="https://doi.org/10.7763/IJCTE.2013.V5.811" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.7763/IJCTE.2013.V5.811</a>
  52. D. Zakrzewska and J. Murlewski, “Clustering algorithms for bank customer segmentation,” in Proceedings of the 5th International Conference on Intelligent Systems Design and Applications, H. Kwasnicka and M. Paprzycki, Eds., pp. 197-202, 2005. DOI: <a href="https://doi.org/10.1109/ISDA.2005.33." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1109/ISDA.2005.33.</a>
  53. J.R. Fonseca and M.G. Cardoso, “Supermarket customers segments stability,” Journal of Targeting, Measurement and Analysis for Marketing, vol. 15, no. 4, pp. 210-221, 2007. DOI:<a href="https://doi.org/10.1057/palgrave.jt.5750052" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1057/palgrave.jt.5750052</a>
  54. D.C. Li, W.L. Dai, and W.T. Tseng, “A two-stage clustering method to analyze customer characteristics to build discriminative customer management: A case of textile manufacturing business,” Expert Systems with Applications, vol. 38, no. 6, pp. 7186-7191, 2011. DOI:<a href="https://doi.org/10.1016/j.eswa.2010.12.041" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.eswa.2010.12.041</a>
  55. X. Lei and H. Ouyang, “Image segmentation algorithm based on improved fuzzy clustering,” Cluster Computing, vol. 22, Suppl 6, pp. 13911-13921, 2019. DOI:<a href="https://doi.org/10.1007/s10586-018-2128-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s10586-018-2128-9</a>
  56. M. Subramaniyan, A. Skoogh, A. S. Muhammad, J. Bokrantz, B. Johansson, and C. Roser, “A generic hierarchical clustering approach for detecting bottlenecks in manufacturing,” Journal of Manufacturing Systems, vol. 55, pp. 143-158, 2020. DOI:<a href="https://doi.org/10.1016/j.jmsy.2020.02.011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jmsy.2020.02.011</a>
  57. H. Ahn and T. W. Chang, “A similarity-based hierarchical clustering method for manufacturing process models,” Sustainability, vol. 11, no. 9, p. 2560, 2019. DOI:<a href="https://doi.org/10.3390/su11092560" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/su11092560</a>
DOI: https://doi.org/10.2478/mspe-2024-0037 | Journal eISSN: 2450-5781 | Journal ISSN: 2299-0461
Language: English
Page range: 401 - 408
Submitted on: Nov 1, 2023
Accepted on: Jul 1, 2024
Published on: Sep 5, 2024
Published by: STE Group sp. z.o.o.
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2024 Ririn Diar Astanti, The Jin Ai, published by STE Group sp. z.o.o.
This work is licensed under the Creative Commons Attribution 4.0 License.