Have a personal or library account? Click to login
Virtual Simulation Modeling as a Key Element of Warehouse Location Optimization Strategy Cover

Virtual Simulation Modeling as a Key Element of Warehouse Location Optimization Strategy

By:
Open Access
|Sep 2024

References

  1. M. Izdebski, I. Jacyna-Gołda, P. Gołębiowski, and J. Plandor, “The Optimization Tool Supporting Supply Chain Management in the Multi-Criteria Approach,” Archives of Civil Engineering, pp. 505-524, 2020, doi: <a href="https://doi.org/10.24425/ace.2020.134410." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.24425/ace.2020.134410.</a>
  2. X.L. Wang, M. Xu, J. Xiao, and R. Guo, “Optimization of Goods Locations Assignment of Automated Warehouse on Hierarchic Genetic Algorithm,” AMM, vol. 510, pp. 265-270, 2014, doi: <a href="https://doi.org/10.4028/www.scientific.net/AMM.510.265." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4028/www.scientific.net/AMM.510.265.</a>
  3. P. Pawlewski, M. Hoffmann, I. Kegel, K. Krawczyk, and A. Kołodziej, „Proces referencyjny jako narzędzie przyspie-szające modelowanie symulacyjne procesów logistycznych,” Zeszyty Naukowe Politechniki Poznańskiej. Organizacja i Zarządzanie 85, 2022.
  4. M. Beaverstock, A. Greenwood, and W. Nordgren, Applied simulation: modeling and analysis using FlexSim, 5th ed.: Published by FlexSim Software Products, Inc., Canyon Park Technology Center, Building A Suite 2300, Orem, UT 84097 USA., 2017.
  5. J. Dorismond, “Supermarket optimization: Simulation modeling and analysis of a grocery store layout,” in 2016 Winter Simulation Conference (WSC), Washington, DC, USA, Dec. 2016, pp. 3656-3657.
  6. N. Chiadamrong and V. Piyathanavong, “Optimal design of supply chain network under uncertainty environment using hybrid analytical and simulation modeling approach,” J Ind Eng Int, vol. 13, no. 4, pp. 465-478, 2017, doi: <a href="https://doi.org/10.1007/s40092-017-0201-2." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s40092-017-0201-2.</a>
  7. S. Kim, Y. Choi, and S. Kim, “Simulation Modeling in Supply Chain Management Research of Ethanol: A Review,” Energies, vol. 16, no. 21, p. 7429, 2023, doi: <a href="https://doi.org/10.3390/en16217429." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/en16217429.</a>
  8. M. Krynke and M. Mazur, “Innovative Work Order Planning with Process Optimization Using Computer Simulation in the Automotive Industry, in the Case of Repair Workshops,” Period. Polytech. Transp. Eng., 2020, doi: <a href="https://doi.org/10.3311/PPtr.23546." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3311/PPtr.23546.</a>
  9. D. Siwiec, A. Pacana, and R. Ulewicz, “Concept of a model to predict the qualitative-cost level considering customers’ expectations,” PJMS, vol. 26, no. 2, pp. 330-340, 2022, doi: <a href="https://doi.org/10.17512/pjms.2022.26.2.20." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.17512/pjms.2022.26.2.20.</a>
  10. M.O. Mohammadi, T. Dede, and M. Grzywiński, “Solving a stochastic time-cost-quality trade-off problem by meta-heuristic optimization algorithms,” BoZPE, vol. 11, no. 2022.11, pp. 41-48, 2022, doi: <a href="https://doi.org/10.17512/bozpe.2022.11.05." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.17512/bozpe.2022.11.05.</a>
  11. M. Krynke, K. Mielczarek, and O. Kiriliuk, “Cost Optimization and Risk Minimization During Teamwork Organization,” Management Systems in Production Engineering, vol. 29, no. 2, pp. 145-150, 2021, doi: <a href="https://doi.org/10.2478/mspe-2021-0019." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/mspe-2021-0019.</a>
  12. M. Krynke, “Management optimizing the costs and duration time of the process in the production system,” Production Engineering Archives, vol. 27, no. 3, pp. 163-170, 2021, doi: <a href="https://doi.org/10.30657/pea.2021.27.21." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.30657/pea.2021.27.21.</a>
  13. Z. Čičková, M. Reiff, and P. Holzerová, “Applied multi-criteria model of game theory on spatial allocation problem with the influence of the regulator,” PJMS, vol. 26, no. 2, pp. 112-129, 2022, doi: <a href="https://doi.org/10.17512/pjms.2022.26.2.07." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.17512/pjms.2022.26.2.07.</a>
  14. M. Odlanicka-Poczobutt, „Lokalizacja własnych punktów dystrybucji metodą środka ciężkości na przykładzie wybra-nego producenta produktów drewnopochodnych,” Zeszyty Naukowe Politechniki Śląskiej. Organizacja i Zarządzanie, no. 78, pp. 335-351, 2015. [Online]. Available: http://www.woiz.polsl.pl/znwoiz/z78/Odlanicka-Poczo-butt.pdf
  15. I. Kaczmar, Komputerowe modelowanie i symulacje procesów logistycznych w środowisku FlexSim. Warszawa: Wydawnictwo Naukowe PWN, 2019.
  16. E. Kuczyńska and J. Ziółkowski, „Wyznaczanie lokalizacji obiektu logistycznego z zastosowaniem metody wyważo-nego środka ciężkości – studium przypadku,” Biuletyn WAT, vol. 61, no. 3, pp. 339-351, 2012.
  17. S. Supsomboon, “Simulation for Jewelry Production Process Improvement Using Line Balancing: A Case Study,” Management Systems in Production Engineering, vol. 27, no. 3, pp. 127-137, 2019, doi: <a href="https://doi.org/10.1515/mspe-2019-0021." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1515/mspe-2019-0021.</a>
  18. O. Shatalova, E. Kasatkina, and V. Larionov, “Multi-criteria Optimization in Solving the Problem of Expanding Production Capacity of an Enterprise as a Method of Modeling Strategic Directions for the Development of Production Systems,” MATEC Web Conf., vol. 346, p. 3105, 2021, doi: <a href="https://doi.org/10.1051/matecconf/202134603105." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1051/matecconf/202134603105.</a>
  19. S.M. Kalinović, D.I. Tanikić, J.M. Djoković, R.R. Nikolić, B. Hadzima, and R. Ulewicz, “Optimal Solution for an Energy Efficient Construction of a Ventilated Façade Obtained by a Genetic Algorithm,” Energies, vol. 14, no. 11, p. 3293, 2021, doi: <a href="https://doi.org/10.3390/en14113293." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/en14113293.</a>
  20. T. Pukkala and J. Kangas, “A heuristic optimization method for forest planning and decision making,” Scandinavian Journal of Forest Research, vol. 8, 1-4, pp. 560-570, 1993, doi: <a href="https://doi.org/10.1080/02827589309382802." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/02827589309382802.</a>
  21. M. Daroń, “Simulations in planning logistics processes as a tool of decision-making in manufacturing companies,” Production Engineering Archives, vol. 28, no. 4, pp. 300-308, 2022, doi: <a href="https://doi.org/10.30657/pea.2022.28.38." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.30657/pea.2022.28.38.</a>
  22. M. Laguna, OptQuest, 2011. [Online]. Available: https://www.opttek.com/sites/default/files/pdfs/optquest-optimization%20of%20complex%20systems.pdf.
  23. A. Jerbi, A. Ammar, M. Krid, and B. Salah, “Performance optimization of a flexible manufacturing system using simulation: the Taguchi method versus OptQuest,” Simulation, 2019, doi: <a href="https://doi.org/10.1177/0037549718819804." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1177/0037549718819804.</a>
  24. FlexSim, User manual, 2017. M. Izdebski, I. Jacyna-Gołda, P. Gołębiowski, and J. Plandor, “The Optimization Tool Supporting Supply Chain Management in the Multi-Criteria Approach,” Archives of Civil Engineering, pp. 505-524, 2020, doi: <a href="https://doi.org/10.24425/ace.2020.134410." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.24425/ace.2020.134410.</a>
  25. X.L. Wang, M. Xu, J. Xiao, and R. Guo, “Optimization of Goods Locations Assignment of Automated Warehouse on Hierarchic Genetic Algorithm,” AMM, vol. 510, pp. 265-270, 2014, doi: <a href="https://doi.org/10.4028/www.scientific.net/AMM.510.265." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4028/www.scientific.net/AMM.510.265.</a>
  26. P. Pawlewski, M. Hoffmann, I. Kegel, K. Krawczyk, and A. Kołodziej, „Proces referencyjny jako narzędzie przyspie-szające modelowanie symulacyjne procesów logistycznych,” Zeszyty Naukowe Politechniki Poznańskiej. Organizacja i Zarządzanie 85, 2022.
  27. M. Beaverstock, A. Greenwood, and W. Nordgren, Applied simulation: modeling and analysis using FlexSim, 5th ed.: Published by FlexSim Software Products, Inc., Canyon Park Technology Center, Building A Suite 2300, Orem, UT 84097 USA., 2017.
  28. J. Dorismond, “Supermarket optimization: Simulation modeling and analysis of a grocery store layout,” in 2016 Winter Simulation Conference (WSC), Washington, DC, USA, Dec. 2016, pp. 3656-3657.
  29. N. Chiadamrong and V. Piyathanavong, “Optimal design of supply chain network under uncertainty environment using hybrid analytical and simulation modeling approach,” J Ind Eng Int, vol. 13, no. 4, pp. 465-478, 2017, doi: <a href="https://doi.org/10.1007/s40092-017-0201-2." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s40092-017-0201-2.</a>
  30. S. Kim, Y. Choi, and S. Kim, “Simulation Modeling in Supply Chain Management Research of Ethanol: A Review,” Energies, vol. 16, no. 21, p. 7429, 2023, doi: <a href="https://doi.org/10.3390/en16217429." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/en16217429.</a>
  31. M. Krynke and M. Mazur, “Innovative Work Order Planning with Process Optimization Using Computer Simulation in the Automotive Industry, in the Case of Repair Workshops,” Period. Polytech. Transp. Eng., 2020, doi: <a href="https://doi.org/10.3311/PPtr.23546." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3311/PPtr.23546.</a>
  32. D. Siwiec, A. Pacana, and R. Ulewicz, “Concept of a model to predict the qualitative-cost level considering customers’ expectations,” PJMS, vol. 26, no. 2, pp. 330-340, 2022, doi: <a href="https://doi.org/10.17512/pjms.2022.26.2.20." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.17512/pjms.2022.26.2.20.</a>
  33. M.O. Mohammadi, T. Dede, and M. Grzywiński, “Solving a stochastic time-cost-quality trade-off problem by meta-heuristic optimization algorithms,” BoZPE, vol. 11, no. 2022.11, pp. 41-48, 2022, doi: <a href="https://doi.org/10.17512/bozpe.2022.11.05." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.17512/bozpe.2022.11.05.</a>
  34. M. Krynke, K. Mielczarek, and O. Kiriliuk, “Cost Optimization and Risk Minimization During Teamwork Organization,” Management Systems in Production Engineering, vol. 29, no. 2, pp. 145-150, 2021, doi: <a href="https://doi.org/10.2478/mspe-2021-0019." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/mspe-2021-0019.</a>
  35. M. Krynke, “Management optimizing the costs and duration time of the process in the production system,” Production Engineering Archives, vol. 27, no. 3, pp. 163-170, 2021, doi: <a href="https://doi.org/10.30657/pea.2021.27.21." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.30657/pea.2021.27.21.</a>
  36. Z. Čičková, M. Reiff, and P. Holzerová, “Applied multi-criteria model of game theory on spatial allocation problem with the influence of the regulator,” PJMS, vol. 26, no. 2, pp. 112-129, 2022, doi: <a href="https://doi.org/10.17512/pjms.2022.26.2.07." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.17512/pjms.2022.26.2.07.</a>
  37. M. Odlanicka-Poczobutt, „Lokalizacja własnych punktów dystrybucji metodą środka ciężkości na przykładzie wybra-nego producenta produktów drewnopochodnych,” Zeszyty Naukowe Politechniki Śląskiej. Organizacja i Zarządzanie, no. 78, pp. 335-351, 2015. [Online]. Available: http://www.woiz.polsl.pl/znwoiz/z78/Odlanicka-Poczo-butt.pdf
  38. I. Kaczmar, Komputerowe modelowanie i symulacje procesów logistycznych w środowisku FlexSim. Warszawa: Wydawnictwo Naukowe PWN, 2019.
  39. E. Kuczyńska and J. Ziółkowski, „Wyznaczanie lokalizacji obiektu logistycznego z zastosowaniem metody wyważo-nego środka ciężkości – studium przypadku,” Biuletyn WAT, vol. 61, no. 3, pp. 339-351, 2012.
  40. S. Supsomboon, “Simulation for Jewelry Production Process Improvement Using Line Balancing: A Case Study,” Management Systems in Production Engineering, vol. 27, no. 3, pp. 127-137, 2019, doi: <a href="https://doi.org/10.1515/mspe-2019-0021." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1515/mspe-2019-0021.</a>
  41. O. Shatalova, E. Kasatkina, and V. Larionov, “Multi-criteria Optimization in Solving the Problem of Expanding Production Capacity of an Enterprise as a Method of Modeling Strategic Directions for the Development of Production Systems,” MATEC Web Conf., vol. 346, p. 3105, 2021, doi: <a href="https://doi.org/10.1051/matecconf/202134603105." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1051/matecconf/202134603105.</a>
  42. S.M. Kalinović, D.I. Tanikić, J.M. Djoković, R.R. Nikolić, B. Hadzima, and R. Ulewicz, “Optimal Solution for an Energy Efficient Construction of a Ventilated Façade Obtained by a Genetic Algorithm,” Energies, vol. 14, no. 11, p. 3293, 2021, doi: <a href="https://doi.org/10.3390/en14113293." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/en14113293.</a>
  43. T. Pukkala and J. Kangas, “A heuristic optimization method for forest planning and decision making,” Scandinavian Journal of Forest Research, vol. 8, 1-4, pp. 560-570, 1993, doi: <a href="https://doi.org/10.1080/02827589309382802." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1080/02827589309382802.</a>
  44. M. Daroń, “Simulations in planning logistics processes as a tool of decision-making in manufacturing companies,” Production Engineering Archives, vol. 28, no. 4, pp. 300-308, 2022, doi: <a href="https://doi.org/10.30657/pea.2022.28.38." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.30657/pea.2022.28.38.</a>
  45. M. Laguna, OptQuest, 2011. [Online]. Available: https://www.opttek.com/sites/default/files/pdfs/optquest-optimization%20of%20complex%20systems.pdf
  46. A. Jerbi, A. Ammar, M. Krid, and B. Salah, “Performance optimization of a flexible manufacturing system using simulation: the Taguchi method versus OptQuest,” Simulation, 2019, doi: <a href="https://doi.org/10.1177/0037549718819804." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1177/0037549718819804.</a>
  47. FlexSim, User manual, 2017.
DOI: https://doi.org/10.2478/mspe-2024-0032 | Journal eISSN: 2450-5781 | Journal ISSN: 2299-0461
Language: English
Page range: 339 - 344
Submitted on: Jan 1, 2024
Accepted on: Jul 1, 2024
Published on: Sep 5, 2024
Published by: STE Group sp. z.o.o.
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2024 Marek Krynke, published by STE Group sp. z.o.o.
This work is licensed under the Creative Commons Attribution 4.0 License.