References
- M.C. Cooper, L.M. Ellram. “Characteristics of supply chain management and the implications for purchasing and logistics strategy”. The International Journal of Logistics Management, vol. 4 no. 2, 1996, pp. 13-24.
- C.R. Carter, D.S. Rogers, T.Y. Choi. “Toward the theory of the supply chain”. Journal of Supply Chain Management, vol. 51 no. 2, 2015, pp. 89-97.
- L. Bals, W.L. Tate. “Sustainable supply chain design in social businesses: advancing the theory of supply chain”. Journal of Business Logistics, vol. 39 no. 1, 2018, pp. 57-79.
- M. Etminan, G. Myhre, E.J. Highwood, K.P. Shine. “Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing”. Geo-physical Research Letters, vol. 43, 2006, pp. 12614-12623.
- R.I. Mogos, M.D. Negescu-Oancea, S. Burlacu, V.A. Troaca. “Climate change and health protection in European union”. European Journal of Sustainable Development, vol. 10, no. 3, 2021, pp. 97-108.
- B. He, Y. Liu, L. Zeng, S. Wang, D. Zhang, Q. Yu. “Product carbon footprint across sustainable supply chain”, Journal of Cleaner Production, vol. 241, no. 11, 2019, p. 118320.
- C. Bode, S.M. Wagner. “Structural drivers of upstream supply chain complexity and the frequency of supply chain disruptions”. Journal of Operations Management, vol. 36, 2015, pp. 215-228.
- C.A. Silva, T.A. Runkler, J.M. Sousa, J.M.S. Da Costa. “Optimization of logistic processes in supply-chains using meta-heuristics”. Proceedings of the Progress in Artificial Intelligence. EPIA 2003, Lecture Notes in Computer Science, vol. 2902, 2003.
- T. Paksoy, C-T Chang. “Revised multi-choice goal programming for multi-period, multi-stage inventory controlled supply chain model with popup stores in Guerrilla marketing”. Applied Mathematical Modelling, vol. 34, no.11, 2010, pp. 3586-3598.
- C.S. Sung, S.H. Song. “Integrated service network design for a cross-docking supply chain network”. Journal of the Operational Research Society, vol. 54, no. 12, pp. 2003, 1283-1295.
- D.-H. Lee, M. Dong. “A heuristic approach to logistics network design for end-of-lease computer products recovery”. Transportation Research Part E: Logistics and Transportation Review, vol. 44, no. 3, 2008, pp. 455-474.
- V. Jayaraman, A. Ross. “A simulated annealing methodology to distribution network design and management”. Journal of Operational Research, vol. 144, no. 3, 2003, pp. 629-645.
- M.S. Pishvaee, K. Kianfar, B. Karimi. “Reverse logistics network design using simulated annealing”. The International Journal of Advanced Manufacturing Technology, vol. 47, no. 1-4, 2010, pp. 269-281.
- B. Dengiz, F. Altiparmak, A.E. Smith. “Local search genetic algorithm for optimal design of reliable networks”. IEEE Transactions on Evolutionary Computation, vol. 1, no. 3, 1997, pp. 179-188.
- F. Altiparmak, M., Gen, L. Lin, T. Paksoy. “A genetic algorithm approach for multi-objective optimization of supply chain networks”. Computers & Industrial Engineering, vol. 51, no. 1, 2006, pp. 196-215.
- J. B. Jo, L. Yinzhen, M. Gen. “Nonlinear fixed charge transportation problem by spanning tree-based genetic algorithm”. Computers & Industrial Engineering, vol. 53, no. 2, 2007, pp. 290-298.
- H. Min, H. Ko. “The dynamic design of a re verse logistics network from the perspective of third-party logistics service providers”. International Journal of Production Economics, vol. 113, no. 1, 2008, pp. 176-192.
- G. Kannan, S. Pokharel, P.S. Kumar. “A hybrid approach using ISM and fuzzy TOPSIS for the selection of reverse logistics provider, Resources, Conservation & Recycling, Vol. 54, No. 1, 2009, pp. 28-36.
- H.F. Wang, H.F., H.W. Hsu. “A closed-loop logistic model with a spanning-tree based genetic algorithm”. Computers & Operations Research, vol. 37, no. 2, 2010, pp. 376-389.
- W. Liu, X. Li, N. Luo, X. Chen. “Common grounding optimization for CVRP”. Proceedings of the IEEE 8th Conference on Industrial Electronics and Applications (ICIEA), Melbourne, VIC, 2013, pp. 1755-1758.
- B. Rabta, R. Schodl, G. Reiner, J. Fichtinger. “A hybrid analysis method for multi-class queueing networks with multi-server nodes”. Decision Support Systems, vol. 54, no.4, 2012, pp. 1541-1547.
- M.T Melo, S. Nickel, F. Saldanha-Da-Gama. “Facility location and supply chain management – a review”. European Journal of Operational Research, vol. 196, no. 2, 2009, pp. 401-412.
- H. Lee, Y. Fan. “An Adaptive real-coded genetic algorithm”. Applied Artificial Intelligence, vol. 16, no.6, 2002, pp. 457-486.
- A. Syarif, Y. Yun, M. Gen. “Study on multi-stage logistic chain network: a spanning tree-based genetic algorithm approach”. Computers & Industrial Engineering, vol. 43, no. 1-2, 2002, pp. 299-314.
- M. Gen, F. Altiparmak, L. Lin. “A genetic algorithm for two stage transportation problem using priority-based encoding”. OR Spectrum, vol. 28, no. 3, 2006, pp. 337-354.
- M. Zandieh, M. Amiri, B. Vahdani, R. Soltani. “A robust parameter design for multi-response problems”. Journal of Computational and Applied Mathematics, vol. 230, no. 2, 2009, pp. 463-476.
- H. Khorshidian, N. Javadian, M. Zandieh, J. Rezaeian, K. Rahmani. “A genetic algorithm for JIT single machine scheduling with preemption and machine idle time”, Expert Systems with Applications, vol. 38, no. 7, 2011, pp. 7911-7918.
- M. Xu, J. Yang, Z. Gao. “Parameters sensitive analyses for using genetic algorithm to solve continuous network design problems”. Procedia – Social and Behavioral Sciences, vol. 43, 2012, pp. 435-444.
- J. Sadeghi, S. Sadeghi, S.T.A. Niaki. “A hybrid vendor managed inventory and redundancy allocation optimization problem in supply chain management: AnNSGA-II with tuned parameters”. Computers & Operations Research, Vol. 41, No. 1, 2014, pp. 53-64.
- E. Behmanesh, J. Pannek. “The effect of various parameters of solution methodology on a flexible integrated supply chain model, Mathematical Problems in Engineering, vol. 2018.
- M.M. Tavana, F.J. Santos-Arteaga, A. Mahmoodirad, S. Niroomand, M. Sanei. “Multi-stage supply chain network solution methods: hybrid metaheuristics and performance measurement”. International Journal of Systems Science: Operations & Logistics, vol 5, no. 4, 2018, pp. 356-373, 2018.
- F. Goodarzian, H. Hosseini-Nasab, M.B. Fakhrzad. “A multi-objective sustainable medicine supply chain network design using a novel hybrid multi-objective metaheuristic algorithm”. International Journal of Engineering, vol. 33, no. 10, 2020, pp. 1986-1995.
- S.O. Duffuaa, A. Mohammed. “Performance evaluation of meta-heuristic algorithms for designing multi-objective multi-product multi-echelon supply chain network”. Soft Computing, vol. 27, 2022, pp. 12223-12248.
- L. Pan, M. Shan, L. Li. “Optimizing perishable product supply chain network using hybrid metaheuristic algorithms”. Sustainability, vol.15, no. 13, 2023, pp. 1-21.
- A.R.W Ananda, P. Astuty, Y.C. Nugroho. “Role of green supply chain management in embolden competitiveness and performance: Evidence from Indonesian organizations”. International Journal of Supply Chain Management, Vol. 7, No. 5, 2018, pp. 437-442.
- F. El Dabee, R. Marian, Y. Amer. “A novel optimization model for simultaneous cost-risk reduction in multi-suppliers just-in-time systems”. Journal of Computer Science, vol. 9, no.12, 2013, pp. 1778-1792.
- J.C. Melo, B.S. Bezerra, F.B. Souza. “An analysis of JIT from the perspective of environmental sustainability”. Revista GEPROS, 17, no. 2, 2022, pp. 111-135.
- C. Kauffmann, C. Tébar Less, D. Teichmann. “Corporate Greenhouse Gas Emission Reporting: A Stocktaking of Government Schemes.” OECD Working Papers on International Investment, OECD Publishing, 2012.
- M. Gen, R. Cheng. Genetic algorithms and engineering design, John Wiley & Sons, Inc, 1997.
- C.R. Reeves, J.E., Rowe. Genetic Algorithms: Principles and Perspectives: A Guide to GA Theory. New York: Kluwer, 2003.