[1] Appendix 4 to the Ordinance of the Minister of Energy of 23 November 2016 concerning the detailed requirements regarding the conduction of underground mining plant operations. Dz. U. 2017, item 1118.
[2] A. Carbogno, M. Żołnierz, S. Mateja S.: Liny o powierzchniowym styku drutów stosowane w górniczych urządzeniach transportowych. Bezpieczeństwo Pracy Urządzeń Transportowych w Górnictwie. Monografia CBiDGP Sp. z o.o., Lędziny 2011.
[4] B. Kubiś: Wpływ wstępnej deformacji splotek w linach kompaktowanych na ich trwałość i parametry wytrzymałościowe (Effect of preliminary deformation of strands in compacted ropes on their durability and strength parameters). GIG, Katowice 2019, Praca doktorska w maszynopisie niepublikowana. (typescript in Polish with an abstract in English)
[9] T. Huang, T. Xiahou, Y.F. Li, et al.: Assessment of wind turbine generators by fuzzy universal generating function. Eksploatacja i Niezawodnosc – Maintenance and Reliability; 23(2), pp. 308-314, 2021, https://doi.org/10.17531/ein.2021.2.10.10.17531/ein.2021.2.10
[10] Y.F. Li, H.Z. Huang, J. Mi, et al.: Reliability analysis of multi-state systems with common cause failures based on Bayesian network and fuzzy probability. Annals of Operations Research, 311, pp. 2022; https://doi.org/10.1007/s10479-019-03247-6.10.1007/s10479-019-03247-6
[11] Y.F. Li, Y. Liu, T. Huang, et al.: Reliability assessment for systems suffering common cause failure based on Bayesian networks and proportional hazards model. Quality and Reliability Engineering International, 36 (7), pp. 2509-2520, 2020, https://doi.org/10.1002/qre.2713.10.1002/qre.2713
[12] J. Mi, Y.F. Li, W. Peng, et al.: Reliability analysis of complex multi-state system with common cause failure based on evidential networks. Reliability Engineering & System Safety; 174: pp. 195-209, 71-81, 2018, https://doi.org/10.1016/j.ress.2018.02.021.10.1016/j.ress.2018.02.021
[13] G. Olszyna. A. Tytko. A tool for determining the number of bends and places of accumulation of potential wear of steel ropes operating in the luffing systems of basic opencast mining machines, Min. Mach. 2022, vol. 40 issue 4, pp. 229-237. DOI: 10.32056/KOMAG2022.4.5
[14] U. Breim: Torque cycle fatigue of wire ropes. OIPEEC Conference, September 2007, How to get the most out of your ropes. pp. 99-106, Johannesburg, 2007.
[15] J.M. Teissier, I.M.L. Ridge, J.J. Evans, M. Fournier: The effect of wire break distribution on the breaking strength of a wire rope OIPEEC Conference, April 2017, Rope – Present and Futere. pp. 267-293, La Rochelle 2017
[16] T. Weber, K.H. Wehking: Bending fatigue of wire ropes under torsion. OIPEEC Conference, March 2015, Challenging rope applications. pp. 251-268, Stuttgart 2015
[17] M. Mahmud, S. Abdullah S.M. Yunoh, A. Ariffin, Z. Nopiah: Damaging fatigue cycles determination for random service loadings using mixed Weibull analysis. International Journal of Automotive and Mechanical Engineering. Volume 13, Issue 3 pp. 3628-3641, December 2016. https://doi.org/10.15282/ijame.13.3.2016.8.029810.15282/ijame.13.3.2016.8.0298
[18] M. Kamal, M.M. Rahman: Fatigue life estimation models: a state of the art. International Journal of Automotive and Mechanical Engineering. Volume 9, pp. 1599-1608, January-June 2014 http://dx.doi.org/10.15282/ijame.9.2014.10.0132
[19] J. Winkler, C.T. Georgakis, G Fischer: Fretting fatigue behavior of high-strength steel mono strands under bending load. International Journal of Fatigue. Volume 13, pp. 13-23, 2015 http://dx.doi.org/10.1016/j.ijfatigue.2014.08.009.10.1016/j.ijfatigue.2014.08.009
[20] S. Mohamed, S. Abdullah, A. Arifin, A.K. Ariffin, M.M. Padzi: Characterization of the biaxial fatigue behaviour on medium carbon steel using the strain-life approach. International Journal of Automotive and Mechanical Engineering. Volume 13, pp. 3262-3277, 2016. https://doi.org/10.15282/ijame.13.1.2016.12.0272.10.15282/ijame.13.1.2016.12.0272
[21] M. Kamal, M.M Rahman: Finite element-based fatigue behaviour of springs in automobile suspension. International Journal of Automotive and Mechanical Engineering. Volume 10, pp. 1910-1919, July- December 2014 http://dx.doi.org/10.15282/ijame.10.2014.8.015910.15282/ijame.10.2014.8.0159
[22] M. Kamal, M.M. Rahman, M.S.M. Sani: Application of multi-body simulation for fatigue life estimation. International Journal of Automotive and Mechanical Engineering. Volume 7, pp. 912-923, January-June 2013. http://dx.doi.org/10.15282/ijame.7.2012.9.007410.15282/ijame.7.2012.9.0074
[23] S. Salleh, M.A. Abdullah, M.F. Abdulhamid M.N. Tamin: Methodology for reliability assessment of steel wire ropes under fretting fatigue conditions. Journal of Mechanical Engineering and Sciences. Volume 11, Issue 1, pp. 2488-2502, March 2017. https://doi.org/10.15282/jmes.11.1.2017.8.022910.15282/jmes.11.1.2017.8.0229
[24] L. Lombardi, F. Clerici: An innovative method for wire rope fatigue life evaluation. OIPEEC Conference, Marz 2013, Simulating Rope Applications. pp. 115-126 Oxford 2013.
[27] A. Hemer, L. Milović, A. Grbovic, B. Aleksic, V. Aleksic: Numerical determination and experimental validation of the fracture toughness of welded joints. Engineering Failure Analysis, Volume 107, 2020, https://doi.org/10.1016/j.eng-failanal.2019.104220.
[28] A. Sedmak, M. Rakin: Application of fracture mechanics in assessment of structural integrity, Monograph of the VIII International Fracture Mechanics Summer School, TMF and DIVK, Belgrade, pp. 373-386, 2004.
[29] D. Zhao, Y.X. Liu, X.T. Ren et al.: Fatigue life prediction of wire rope based on grey particle filter method under small sample condition. Eksploatacja i Niezawodność – Maintenance and Reliability Volume 23 no. 3 s 456-463, 2021 http://dx.doi.org/10.17531/ein.2021.3.610.17531/ein.2021.3.6