Have a personal or library account? Click to login
Heat and Power System as an Independent Source of Electric Power. Case Study Cover

Heat and Power System as an Independent Source of Electric Power. Case Study

By: Wes Grebski and  Robert Ulewicz  
Open Access
|Jul 2022

References

  1. [1] M. Grebski, W. Grebski. Project-based Approach to Engineering Technology Education. Production Engineering Archives, 2019, 25(25) pp. 56-59. https://doi.org/10.30657/pea.2019.25.11
  2. [2] W. Grebski, M. Grebski. Building an Ecosystem for a New Engineering Program. Management Systems in Production Engineering, 2018, 26(2), 119-123. https://doi.org/10.1515/mspe-2018-0019
  3. [3] A. Kuzior, M. Grebski, W. Grebski. Marketing of an academic program: case study of an engineering program. Marketing and Management of Innovations, 2021, (1), pp. 56-64. doi:10.21272/mmi.2021.1-05
  4. [4] R. Wolniak, M. Grebski, B. Skotnicka-Zasadzień. Comparative Analysis of the Level of Satisfaction with the Services Received at the Business Incubators (Hazleton, PA, USA and Gliwice, Poland). Sustainability 2019, 11, 2889. https://doi.org/10.3390/su11102889
  5. [5] M. Grebski, R. Wolniak. Global Perspective for Protecting Intellectual Property – Patenting in USA and Poland. Management Systems in Production Engineering, 2018, 26(2) pp. 106-111. https://doi.org/10.2478/mspe-2018-0017
  6. [6] W. Grebski, M. Grebski. Keeping Technical Education Aligned to the Needs and Expectations of Industry. Management Systems in Production Engineering, 2016, 22(2), pp. 77-80. doi:10.2478/mspe-01-02-2016
  7. [7] W. Grebski, M. Grebski. Keeping Higher Education Aligned with the Requirements and Expectations of the Knowledge-Based Economy. Production Engineering Archives, 2018, 21(21), pp. 3-7. doi: 10.30657/pea.2018.21.01
  8. [8] M. Grebski. Mobility of the Workforce and Its Influence on Innovativeness (Comparative Analysis of the United States and Poland). Production Engineering Archives, 2021, 27(4), pp. 272-276. doi: 10.30657/pea.2021.27.36.
  9. [9] S.-H., Wei, C.-F., Tan, P. Koomsap, C.-Y. Huang. International dual-degree programs: Learning experience in student’s perspective, International Symposium on Project Approaches in Engineering Education 2020, 10, pp. 193-198.
  10. [10] T. Nitkiewicz, D.H.N. Ayutthaya, M. Koszewska, K. Wiszumirska, M. Wojnarowska, M., P. Koomsap. LOVE model-based assessment of teaching practices within industrial engineering master programs in Poland and Thailand, International Symposium on Project Approaches in Engineering Education 2020, 10, pp. 165-173.
  11. [11] R. Ulewicz, K. Sethanan. Experience with the accreditation of technical studies in Poland and Thailand’s, International Symposium on Project Approaches in Engineering Education, 2020, 10, pp. 149-156.
  12. [12] K. Adderley. et al. Project Methods in Higher Education. SRHE working party on teaching methods: Techniques group. Guildford, Surrey: Society for research into higher education London, 1975.
  13. [13] H. Ahn, W. Miller, P. Sheaffer, V. Tutterow, V. Rapp. Opportunities for installed combined heat and power (CHP) to increase grid flexibility in the U.S. Energy Policy, 2021, 157, 112485. doi:10.1016/j.enpol.2021.112485
  14. [14] O.A. Broesicke, J. Yan, V.M. Thomas, E. Grubert, S. Derrible, J.C. Crittenden. Combined Heat and Power May Conflict with Decarbonization Goals – Air Emissions of Natural Gas Combined Cycle Power versus Combined Heat and Power Systems for Commercial Buildings. Environmental Science & Technology, 2021, 55(15), pp. 10645-10653. doi:10.1021/acs.est.1c0098034255514
  15. [15] Combined Heat and Power Basics: Advanced Manufacturing. Office of Energy Efficiency and Renewable Energy. https://www.energy.gov/eere/amo/combined-heat-and-power-basics.
  16. [16] A. Czerwińska-Lubszczyk, W. Grebski, M. Jagoda-Sobalak. Cooperation of Universities with Business in Poland and the USA – Perspective of Scientific Environment. Management Systems in Production Engineering, 2020, 28(1), pp. 40-46. https://doi.org/10.2478/mspe-2020-0007
  17. [17] A. Kuzior, A. Kwilinski, V. Tkachenko. Sustainable development of organizations based on the combinatorial model of artificial intelligence. Entrepreneurship and Sustainability Issues, 2019, 7(2), pp. 1353-1376. doi:10.9770/jesi.2019.7.2(39)
  18. [18] P. Breeze. Combined Heat and Power. Academic Press: San Diego, 2017, CA.10.1016/B978-0-12-812908-1.00008-0
  19. [19] İ. Eke. Combined heat and power economic dispatch by Taguchi-based filled function. Engineering Optimization, 2022, pp. 1-15. doi:10.1080/0305215x.2022.2034802
  20. [20] M. Ingaldi, D. Klimecka-Tatar. People’s Attitude to Energy from Hydrogen – from the Point of View of Modern Energy Technologies and Social Responsibility. Energies, 2020, 13(24), 6495, https://doi.org/10.3390/en13246495
  21. [21] A. Kuzior, A. Kwilinski, I. Hroznyi. The Factorial-Reflexive Approach to Diagnosing the Executors’ and Contractors’ Attitude to Achieving the Objectives by Energy Supplying Companies. Energies 2021, 14, 2572. https://doi.org/10.3390/en14092572
  22. [22] U.S. Department of Energy (DOE) (2021). Hybrid Energy Systems: Opportunities for Coordinated Research. National Renewable Energy Laboratory: Golden, CO. DOE/GO-102021-5447. https://www.nrel.gov/docs/fy21osti/77503.pdf.
  23. [23] A. Chittum, K. Nate. Challenges Facing Combined Heat and Power Today: A State-by-State Assessment: Report IE111. American Council for an Energy-Efficient Economy: Washington, D.C. 2011. https://www.energy.gov/sites/prod/files/2013/11/f4/ie111.pdf
  24. [24] W. Ko, J. Kim. Generation Expansion Planning Model for Integrated Energy System Considering Feasible Operation Region and Generation Efficiency of Combined Heat and Power. Energies 2019, 12, 226. https://doi.org/10.3390/en12020226
  25. [25] C.N. Markides. Low-Concentration Solar-Power Systems Based on Organic Rankine Cycles for Distributed-Scale Applications: Overview and Further Developments. Frontiers in Energy Research, 2015, 3. doi:10.3389/fenrg.2015.00047
  26. [26] P. Pourghasem, F. Sohrabi, F. Jabari, B. Mohammadi-Ivatloo, S. Asadi. Combined Heat and Power Stochastic Dynamic Economic Dispatch Using Particle Swarm Optimization Considering Load and Wind Power Uncertainties. In Studies in Systems, Decision and Control, pp. 143-169. (Studies in Systems, Decision and Control; 2020, Vol. 262). Springer. https://doi.org/10.1007/978-3-030-34050-6_7
  27. [27] G. Prinsloo & R. Dobson. Combined solar heat and power with microgrid storage and layered smartgrid control toward supplying off-grid rural villages. Energy Science & Engineering, 2015, 3(2), pp. 135-144. doi:10.1002/ese3.57
  28. [28] J. Ye, R. Yuan. Integrated Natural Gas, Heat, and Power Dispatch Considering Wind Power and Power-to-Gas. Sustainability 2017, 9, 602. https://doi.org/10.3390/su9040602
  29. [29] R. De Souza, M. Casisi, D. Micheli, M. Reini. A Review of Small – Medium Combined Heat and Power (CHP) Technologies and Their Role within the 100% Renewable Energy Systems Scenario. Energies 2021, 14, 5338. https://doi.org/10.3390/en14175338
  30. [30] K. Yun, H. Cho, R. Luck, P.J. Mago. Real-time combined heat and power operational strategy using a hierarchical optimization algorithm. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2011, 225(4), pp. 403-412. https://doi.org/10.1177/2041296710394287
  31. [31] K. Almutairi, S.J. Hosseini Dehshiri, S.S. Hosseini Dehshiri, A. Mostafaeipour, A.X. Hoa, K. Techato. Determination of optimal renewable energy growth strategies using SWOT analysis, hybrid MCDM methods, and game theory: A case study. International Journal of Energy Research, 2021, 46(5), pp. 6766-6789. doi:10.1002/er.7620
  32. [32] R. Karim, F. Muhammad-Sukki, M. Hemmati, M.S. Newaz, H. Farooq, M.N. Muhtazaruddin, M. Zulkipli, J.A. Ardila-Rey. Paving towards Strategic Investment Decision: A SWOT Analysis of Renewable Energy in Bangladesh. Sustainability 2020, 12, 10674. https://doi.org/10.3390/su122410674
  33. [33] S.E. Uhunamure, K. Shale. A SWOT Analysis Approach for a Sustainable Transition to Renewable Energy in South Africa. Sustainability 2021, 13, 3933. https://doi.org/10.3390/su13073933
  34. [34] A. Alexandrov, Characteristics of Single-item Measures in Likert Scale Format. The Electronic Journal of Business Research Methods, 2010, 8(1), pp. 1-12.
  35. [35] A. Pacana, D. Siwiec. Universal Model to Support the Quality Improvement of Industrial Products. Materials 2021, 14, 7872. https://doi.org/10.3390/ma14247872870848034947466
  36. [36] R. Ulewicz, D. Siwiec, A. Pacana, M. Tutak, J. Brodny. Multi-Criteria Method for the Selection of Renewable Energy Sources in the Polish Industrial Sector. Energies 2021, 14, 2386. https://doi.org/10.3390/en14092386
  37. [37] M. Grebski, M. Mazur. Social climate of support for innovativeness, Production Engineering Archives, 2022, 28(1), pp. 110-116, doi: 10.30657/pea.2022.28.12
DOI: https://doi.org/10.2478/mspe-2022-0033 | Journal eISSN: 2450-5781 | Journal ISSN: 2299-0461
Language: English
Page range: 262 - 268
Submitted on: Mar 1, 2022
Accepted on: Jul 1, 2022
Published on: Jul 13, 2022
Published by: STE Group sp. z.o.o.
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Wes Grebski, Robert Ulewicz, published by STE Group sp. z.o.o.
This work is licensed under the Creative Commons Attribution 4.0 License.