Have a personal or library account? Click to login
Accuracy of Hourly Demand Forecasting of Micro Mobility for Effective Rebalancing Strategies Cover

Accuracy of Hourly Demand Forecasting of Micro Mobility for Effective Rebalancing Strategies

Open Access
|Jul 2022

References

  1. [1] Y.Z. Wong, D.A. Hensher, and C. Mulley, “Mobility as a service (MaaS): Charting a future context”, Transp. Res. Part A Policy Pract., vol. 131, pp. 5-19, 2020.10.1016/j.tra.2019.09.030
  2. [2] D.A. Hensher, C. Mulley, C. Ho, Y. Wong, G. Smith, and J. D. Nelson, Understanding Mobility as a Service (MaaS): Past, present and future. Elsevier, 2020.
  3. [3] S. Heikkilä et al., “Mobility as a service-a proposal for action for the public administration, case Helsinki”, 2014.
  4. [4] S. Hietanen, “Mobility as a Service”. The new transport model, vol. 12, no. 2, pp. 2-4, 2014.
  5. [5] A. Kaltenbrunner, R. Meza, J. Grivolla, J. Codina, and R. Banchs, “Urban cycles and mobility patterns: Exploring and predicting trends in a bicycle-based public transport system”, Pervasive Mob. Comput., vol. 6, no. 4, pp. 455-466, 2010.10.1016/j.pmcj.2010.07.002
  6. [6] Priyavrat, N. Sharma, and G. Sikka, “Autoregressive Techniques for Forecasting Applications”, in 2021 2nd International Conference on Secure Cyber Computing and Communications (ICSCCC), 2021.10.1109/ICSCCC51823.2021.9478161
  7. [7] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators”, Neural Netw., vol. 2, no. 5, pp. 359-366, 1989.10.1016/0893-6080(89)90020-8
  8. [8] S. Hochreiter and J. Schmidhuber, “Long short-term memory”. Neural computation vol. 9, no. 8, pp. 1735-1780, 1997.10.1162/neco.1997.9.8.1735
  9. [9] K.L. Clarkson, “Algorithms for closest-point problems (computational geometry)”. Ph.D. dissertation. Stanford University, 1985.
  10. [10] D. Ljubenkov, F. Kon, and C. Ratti, “Optimizing bike sharing system flows using graph mining, convolutional and recurrent neural networks”, in 2020 IEEE European Technology and Engineering Management Summit (E-TEMS), 2020.10.1109/E-TEMS46250.2020.9111707
  11. [11] K. Chen, Y. Zhou, and F. Dai, “A LSTM-based method for stock returns prediction: A case study of china stock market”, 2015 IEEE International Conference on Big Data (Big Data), 2015.10.1109/BigData.2015.7364089
  12. [12] R. Fu, Z. Zhang, and L. Li, “Using LSTM and GRU neural network methods for traffic flow prediction”, in 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), 2016.10.1109/YAC.2016.7804912
  13. [13] C. Xu, J. Ji, and P. Liu, “The station-free sharing bike demand forecasting with a deep learning approach and large-scale datasets”, Transp. Res. Part C Emerg. Technol., vol. 95, pp. 47-60, 2018.10.1016/j.trc.2018.07.013
  14. [14] K. Cho et al., “Learning phrase representations using RNN encoder-decoder for statistical machine translation”, arXiv [cs.CL], 2014.10.3115/v1/D14-1179
  15. [15] S. Ruffieux, E. Mugellini, and O. Abou Khaled, “Bike usage forecasting for optimal rebalancing operations in bike-sharing systems”, in 2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI), 2018.10.1109/ICTAI.2018.00133
  16. [16] “Local weather forecast, news and conditions”, Wunder-ground.com. [Online]. Available: http://www.wunder-ground.com. [Accessed: 05-Dec-2021].
  17. [17] “CalendarDate.com”, Calendardate.com. [Online]. Available: http://www.calendardate.com. [Accessed: 05-Dec-2021].
  18. [18] S.H. Ewaid, S.A. Abed, and S.A. Kadhum, “Predicting the Tigris River water quality within Baghdad, Iraq by using water quality index and regression analysis”, Environ. technol. innov., vol. 11, pp. 390-398, 2018.10.1016/j.eti.2018.06.013
  19. [19] P.-F. Tsai et al., “A classification algorithm to predict chronic pain using both regression and machine learning – A stepwise approach”, Appl. Nurs. Res., vol. 62, no. 151504, p. 151504, 2021.10.1016/j.apnr.2021.151504
  20. [20] M.A. Efroymson, “Multiple regression analysis”, A. Ralston and H. S. Wilf, Eds. New York: Wiley, 1960.
  21. [21] Sathishkumar and Y. Cho, “A rule-based model for Seoul Bike sharing demand prediction using weather data”, Eur. J. Remote Sens., vol. 53, no. sup1, pp. 166-183, 2020.10.1080/22797254.2020.1725789
  22. [22] G.E.P. Box and E. Al, Time series analysis: Forecasting and control. Hoboken, New Jersey: John Wiley & Sons, 2015.
  23. [23] D.P. Kingma and J. Ba, “Adam: A method for stochastic optimization”. arXiv preprint arXiv:1412.6980, 2014.
  24. [24] S.V.J. Park, and Y. Cho, “Using data mining techniques for bike sharing demand prediction in metropolitan city”, Comput. Commun., vol. 153, pp. 353-366, 2020.10.1016/j.comcom.2020.02.007
  25. [25] R.C. Team, “A language and environment for statistical computing. Vienna, Austria: R foundation for statistical computing”, URL http://www.R-project.org, 2013.
  26. [26] Y. Fourcade, A.G. Besnard, and J. Secondi, “Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics”, Glob. Ecol. Biogeogr., vol. 27, no. 2, pp. 245-256, 2018.10.1111/geb.12684
DOI: https://doi.org/10.2478/mspe-2022-0031 | Journal eISSN: 2450-5781 | Journal ISSN: 2299-0461
Language: English
Page range: 246 - 252
Submitted on: Dec 1, 2021
|
Accepted on: Jul 1, 2022
|
Published on: Jul 13, 2022
Published by: STE Group sp. z.o.o.
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Kanokporn Boonjubut, Hiroshi Hasegawa, published by STE Group sp. z.o.o.
This work is licensed under the Creative Commons Attribution 4.0 License.