Have a personal or library account? Click to login

Optimal Gas Transport Management Taking into Account Reliability Factor

Open Access
|Jul 2020

References

  1. [1] A. Tomasgard et al. “Optimization models for the natural gas value chain.” Geometric modelling, numerical simulation, and optimization. Springer, Berlin, Heidelberg, 2007. pp. 521-558. http://dx.doi.org/10.1007/978-3-540-68783-2_1610.1007/978-3-540-68783-2_16
  2. [2] D. Woldeyohannes, and M.A. Abd Majid. “Simulation model for natural gas transmission pipeline network system.” Simulation Modelling Practice and Theory 19.1, pp. 196-212, 2011. http://dx.doi.org/10.1016/j.simpat.2010.06.00610.1016/j.simpat.2010.06.006
  3. [3] G-Y. Zhu, M.A. Henson, and L. Megan. “Dynamic modeling and linear model predictive control of gas pipeline networks.” Journal of Process Control 11.2, pp. 129-148,. http://dx.doi.org/10.1016/S0959-1524(00)00044-510.1016/S0959-1524(00)00044-5
  4. [4] H. Su et al. “An integrated systemic method for supply re-liability assessment of natural gas pipeline networks.” Applied Energy 209, pp. 489-501, 2018. http://dx.doi.org/10.1016/j.apenergy.2017.10.10810.1016/j.apenergy.2017.10.108
  5. [5] Herrán-González et al. “Modeling and simulation of a gas distribution pipeline network.” Applied Mathematical Modelling 33.3, pp. 1584-1600, 2009. http://dx.doi.org/10.1016/j.apm.2008.02.01210.1016/j.apm.2008.02.012
  6. [6] J.S. Simonoff, C.E. Restrepo, and R. Zimmerman. “Risk management of cost consequences in natural gas transmission and distribution infrastructures.” Journal of Loss Prevention in the Process Industries 23.2, pp. 269-279, 2010. http://dx.doi.org/10.1016/j.jlp.2009.10.00510.1016/j.jlp.2009.10.005
  7. [7] L. Contesse, J.C. Ferrer, and S. Maturana. “A mixed-integer programming model for gas purchase and transportation.” Annals of Operations Research 139.1 pp. 39-63, 2005. http://dx.doi.org/10.1007/s10479-005-3443-010.1007/s10479-005-3443-0
  8. [8] L. Poberezhny et al. “Minimizing Losses During Natural Gas Transportation.” Strojnícky casopis – Journal of Mechanical Engineering 69.1, pp. 97-108, 2019. http://dx.doi.org/10.2478/scjme-2019-000810.2478/scjme-2019-0008
  9. [9] L. Ya. Poberezhnyi, et al. “Corrosive and mechanical degradation of pipelines in acid soils.” Strength of Materials 49.4, pp. 539-549, 2017. http://dx.doi.org/10.1007/s11223-017-9897-x10.1007/s11223-017-9897-x
  10. [10] M.G. Sukharev and A. M. Karasevich. “Reliability models for gas supply systems.” Automation and Remote Control 71.7, pp. 1415-1424, 2010. http://dx.doi.org/10.1134/S000511791007015510.1134/S0005117910070155
  11. [11] P. Cimellaro, O. Villa, and M. Bruneau. “Resilience-based design of natural gas distribution networks.” Journal of Infrastructure Systems 21.1. 05014005, 2015. http://dx.doi.org/10.1061/(ASCE)IS.1943-555X.000020410.1061/(ASCE)IS.1943-555X.0000204
  12. [12] P.W. MacAvoy. The natural gas market: Sixty years of regulation and deregulation. Yale University Press, 2008.
  13. [13] Q.P. Zheng et al. “Optimization models in the natural gas industry.” Handbook of Power Systems I. Springer, Berlin, Heidelberg, 2010. pp. 121-148. http://dx.doi.org/10.1007/978-3-642-02493-1_610.1007/978-3-642-02493-1_6
  14. [14] R.Z. Ríos-Mercado et al. “A reduction technique for natural gas transmission network optimization problems.” Annals of Operations Research 117.1-4, pp. 217-234, 2002.10.1023/A:1021529709006
  15. [15] R.Z. Ríos-Mercado, and C. Borraz-Sánchez. “Optimization problems in natural gas transportation systems: A state-of-the-art review.” Applied Energy 147, pp. 536-555, 2015. http://dx.doi.org/10.1016/j.apenergy.2015.03.01710.1016/j.apenergy.2015.03.017
  16. [16] V.M. Zavala. “Stochastic optimal control model for natural gas networks.” Computers & Chemical Engineering 64, pp. 103-113, 2014. http://dx.doi.org/10.1016/j.compchemeng.2014.02.00210.1016/j.compchemeng.2014.02.002
  17. [17] V. Yavorskyi et al. “Risk management of a safe operation of engineering structures in the oil and gas sector.” Proceedings of the 20th International Scientific Conference „Transport Means. 2016.
  18. [18] V. Zapukhliak et al. “Mathematical Modeling of Unsteady Gas Transmission System Operating Conditions under Insufficient Loading.” Energies 12.7, pp. 13-25, 2019. http://dx.doi.org/10.3390/en1207132510.3390/en12071325
  19. [19] W. Yu et al. “Gas supply reliability assessment of natural gas transmission pipeline systems.” Energy 162, pp. 853-870, 2018. http://dx.doi.org/10.1016/j.energy.2018.08.03910.1016/j.energy.2018.08.039
  20. [20] Ya. Doroshenko et al. “Modeling computational fluid dynamics of multiphase flows in elbow and T-junction of the main gas pipeline.” Transport 34.1, pp. 19-29, 2019. http://dx.doi.org/10.3846/transport.2019.744110.3846/transport.2019.7441
  21. [21] N.P. Buslenko, (1978). Modeling of complex systems. M.: Nauka.
  22. [22] Ye.I. Kryzhanivskyi et al. “Enerhetychna bezpeka derzhavy: vysokoefektyvni tekhnolohii vydobuvannia, postachannia i vykorystannia pryrodnoho hazu” Kyiv: Interpres LTD, 2006.
  23. [23] M.P. Kovalko et al. “Truboprovidnyi transport hazu.” Kyiv: ArenaEKO (2002).
DOI: https://doi.org/10.2478/mspe-2020-0030 | Journal eISSN: 2450-5781 | Journal ISSN: 2299-0461
Language: English
Page range: 202 - 208
Submitted on: Jan 1, 2020
Accepted on: Jun 1, 2020
Published on: Jul 17, 2020
Published by: STE Group sp. z.o.o.
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Volodymyr Grudz, Yaroslav Grudz, Vasyl Zapukhliak, Ihor Chudyk, Lubomyr Poberezhny, Nazar Slobodyan, Vitaliy Bodnar, published by STE Group sp. z.o.o.
This work is licensed under the Creative Commons Attribution 4.0 License.