Have a personal or library account? Click to login
Influence of Hydrate Formation and Concentration of Salts on the Corrosion of Steel 20 Pipelines Cover

Influence of Hydrate Formation and Concentration of Salts on the Corrosion of Steel 20 Pipelines

Open Access
|Jul 2020

References

  1. [1] A Chapoy, et al. “Effect of common impurities on the phase behavior of carbon-dioxide-rich systems:Minimizing the risk of hydrate formation and two-phase flow.” SPE Journal, vol. 16, no. 04, pp. 921-930, Dec. 2011, doi: 10.2118/123778-PA10.2118/123778-PA
  2. [2] A. Kahyarian, M. Singer, and S. Nesic. “Modeling of uniform CO2 corrosion of mild steel in gas transportation systems:a review.” Journal of Natural Gas Science and Engineering, vol. 29, pp. 530-549, Feb. 2016, doi: 10.1016/j.jngse.2015.12.05210.1016/j.jngse.2015.12.052
  3. [3] De Waard, U. Lotz, and D. E. Milliams. “Predictive model for CO2 corrosion engineering in wet natural gas pipelines.” Corrosion vol. 47, no. 12, pp. 976-985, Jul. 1991.10.5006/1.3585212
  4. [4] E. O. Obanijesu, et al. “The influence of corrosion inhibitors on hydrate formation temperature along the subsea natural gas pipelines.” Journal of Petroleum Science and Engineering, vol. 120, pp. 2 39-252, Aug. 2014, doi: 10.1016/j.petrol.2014.05.02510.1016/j.petrol.2014.05.025
  5. [5] E. O. Obanijesu, V. Pareek, and M. O. Tade. “Hydrate formation and its influence on natural gas pipeline internal corrosion rate.” SPE oil and gas India conference and exhibition. Society of Petroleum Engineers, Mumbai, India, Jan. 20-22, 2010, doi: 10.2118/128544-MS10.2118/128544-MS
  6. [6] E. O. Obanijesu, V. Pareek, and M. O. Tade. “Modeling the contribution of gas hydrate to corrosion rate along the subsea pipelines.” Petroleum science and technology, vol. 32, no. 21, pp. 2538-2548, Sep. 2014, doi: 10.1080/10916466.2013.84258610.1080/10916466.2013.842586
  7. [7] J.-L. Peytavy, P. Glenat, and P. Bourg. “Kinetic hydrate inhibitors-sensitivity towards pressure and corrosion inhibitors.” International Petroleum Technology Conference, Dubai, U.A.E. Dec. 4-6, 2007, doi: 10.2523/IPTC-11233-MS10.2523/IPTC-11233-MS
  8. [8] K. Alef, et al. “Evaluation of MEG reclamation and natural gas hydrate inhibition during corrosion control switchover.” Journal of Petroleum Science and Engineering, vol. 176, pp. 1175-1186, May. 2019, doi: 10.1016/j.petrol.2018.08.05210.1016/j.petrol.2018.08.052
  9. [9] L. E. Zerpa, et al. “Predicting hydrate blockages in oil, gas and water-dominated systems.” Offshore Technology Conference, Houston, Texas, USA, 30 Apr.-3 May 2012, doi: 10.4043/23490-MS10.4043/23490-MS
  10. [10] L. Poberezhny, et al. “Corrosion-mechanical behavior of gas main steel in saline soils.” Koroze a ochrana materialu vol. 63, no. 3, pp. 105-112, Dec. 2019, doi: 10.2478/kom-2019-001410.2478/kom-2019-0014
  11. [11] L. Poberezhny, et al. “Impact of gas hydrates and long-term operation on fatigue characteristics of pipeline steels.” Procedia Engineering. TRANSBALTICA 2017. Transportation science and technology:proceedings of the 10th international scientific conference, Vilnius Gediminas Technical University, Vilnius, Lithuania, May 4-5, 2017, doi: 10.1016/j.proeng.2017.04.38610.1016/j.proeng.2017.04.386
  12. [12] L. Poberezhny, et al. “Influence of hydrate formation and wall shear stress on the corrosion rate of industrial pipeline materials.” Koroze a ochrana materialu vol. 62, no. 4, pp. 121-128, Dec. 2018, doi: 10.2478/kom-2018-001710.2478/kom-2018-0017
  13. [13] L. Poberezhnyi, et al. “Corrosive and mechanical degradation of pipelines in acid soils.” Strength of Materials vol. 49, no. 4, pp. 539-549, Nov. 2017, doi: 10.1007/s11223-017-9897-x10.1007/s11223-017-9897-x
  14. [14] M. Akhfash, et al. “Gas hydrate thermodynamic inhibition with MDEA for reduced MEG circulation.” Journal of Chemical & Engineering Data, vol. 62, no. 9, pp. 2578-2583, Apr. 2017, doi: 10.1021/acs.jced.7b0007210.1021/acs.jced.7b00072
  15. [15] M. E. Semenov, I. K. Ivanova, and V. V. Koryakina. “Intensification of metal corrosion in gas hydrate formation.” AIP Conference Proceedings, AIP Publishing LLC, vol. 2053. no. 1. Dec. 2018, doi: 10.1063/1.508452710.1063/1.5084527
  16. [16] N. Kalogerakis, et al. “ Effect of surfactants on hydrate formation kinetics.” SPE international symposium on oilfield chemistry. Society of Petroleum Engineers, New Orleans, Louisiana, Mar. 2-5, 1993, doi: 10.2118/25188-MS10.2118/25188-MS
  17. [17] P. Hu, et al. “Effects of carbon steel corrosion on the methane hydrate formation and dissociation.” Fuel, vol. 230, pp. 126-133, Oct. 2018, doi: 10.1016/j.fuel.2018.05.02410.1016/j.fuel.2018.05.024
  18. [18] P. Maruschak, et al. “Physical and mechanical aspects of corrosion damage of distribution gas pipelines after long-term operation.” Journal of failure analysis and prevention, vol. 18, no. 3, pp. 562-567, Mar. 2018, doi: 10.1007/s11668-018-0439-z10.1007/s11668-018-0439-z
  19. [19] P. Maruschak, et al. “Structural and mechanical defects of materials of offshore and onshore main gas pipelines after long-term operation.” Open Engineering, vol. 5, no. 1, pp. 365-372, Oct. 2015, doi: 10.1515/eng-2015-004510.1515/eng-2015-0045
  20. [20] Qi. Sheng, et al. “Simultaneous hydrate and corrosion inhibition with modified poly (vinyl caprolactam) polymers.” Energy & Fuels, vol. 31, no. 7, pp. 6724-6731, Jun 2017, doi:10.1021/acs.energyfuels.7b0052510.1021/acs.energyfuels.7b00525
  21. [21] A. Eslamimanesh, A.H. Mohammadi, and D. Richon. “Thermodynamic consistency test for experimental solubility data in carbon dioxide/methane + water system inside and outside gas hydrate formation region.” Journal of Chemical & Engineering Data, vol. 56, no. 4, pp. 1573-1586, Mar. 2011, doi:10.1021/je101218510.1021/je1012185
  22. [22] S. Nešić.”Key issues related to modelling of internal corrosion of oil and gas pipelines – A review.” Corrosion science, vol. 49, no. 12, pp. 4308-4338, Dec. 2007, doi:10.1016/j.corsci.2007.06.00610.1016/j.corsci.2007.06.006
  23. [23] S. Mokhatab, R. J. Wilkens, and K. J. Leontaritis. “A review of strategies for solving gas-hydrate problems in subsea pipelines.” Energy Sources, Part A, vol. 29, no. 1, pp. 39-45, Dec. 2006, doi:10.1080/00908319093398810.1080/009083190933988
  24. [24] Standard, Norsork. “CO2 Corrosion rate calculation model.” Majorstural, Norway: Norwegian Technological Standards Institute Oscarsgt 20, Jun. 2005.
  25. [25] W. Li, et al. “A study of hydrate plug formation in a subsea natural gas pipeline using a novel high-pressure flow loop.” Petroleum science, vol. 10, no. 1, pp. 97-105, Mar. 2013, doi:10.1007/s12182-013-0255-810.1007/s12182-013-0255-8
DOI: https://doi.org/10.2478/mspe-2020-0021 | Journal eISSN: 2450-5781 | Journal ISSN: 2299-0461
Language: English
Page range: 141 - 147
Submitted on: Jan 1, 2020
|
Accepted on: Jun 1, 2020
|
Published on: Jul 17, 2020
Published by: STE Group sp. z.o.o.
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Lubomyr Poberezhny, Ihor Chudyk, Andrii Hrytsanchuk, Oleg Mandryk, Tetyana Kalyn, Halyna Hrytsuliak, Yaroslav Yakymechko, published by STE Group sp. z.o.o.
This work is licensed under the Creative Commons Attribution 4.0 License.