Have a personal or library account? Click to login
Retrofitting of heat-damaged fiber-reinforced concrete cylinders using welded wire mesh configurations Cover

Retrofitting of heat-damaged fiber-reinforced concrete cylinders using welded wire mesh configurations

By: Aref A. Abadel  
Open Access
|Aug 2024

References

  1. Sarker P, Kelly S, Yao Z. Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete. Mater Des. 2014;29: 584–592. doi: 10.1016/j.matdes.2014.06.059
  2. Shaikh FUA, Vimonsatit V. Effect of cooling methods on residual compressive strength and cracking behavior of fly ash concretes exposed at elevated temperatures. Fire Mater. 2016;40: 335–350. doi: 10.1002/FAM.2276
  3. Abadel A, Elsanadedy H, Almusallam T, Alaskar A, Abbas H, Al-Salloum Y. Residual compressive strength of plain and fiber reinforced concrete after exposure to different heating and cooling regimes. Eur J Environ Civ Eng. 2021;26: 6746–6765. doi: 10.1080/19648189.2021.1960898
  4. Li Q, Yuan G, Shu Q. Effects of heating/cooling on recovery of strength and carbonation resistance of firedamaged concrete. Mag Concr Res. 2015;66: 925–936. doi: 10.1680/MACR.14.00029
  5. Kee S, Kang J, Choi B, Kwon J, Candelaria M. Evaluation of static and dynamic residual mechanical properties of heat-damaged concrete for nuclear reactor auxiliary buildings in korea using elastic wave velocity measurements. Materials (Basel). 2019;12: 2695. doi: 10.3390/ma12172695
  6. Ma C, Garcia R, Yung S, Awang A, Omar W, Pilakoutas K. Strengthening of pre-damaged concrete cylinders using post-tensioned steel straps. Proc Inst Civ Eng – Struct Build. 2019;172(10): 703–711. doi: 10.1680/jstb u.18.00031
  7. Abadel AA, Alharbi YR. Confinement effectiveness of CFRP strengthened ultra-high performance concrete cylinders exposed to elevated temperatures. Mater Sci. 2021;39: 478–490. doi: 10.2478/MSP-2021-0040
  8. Zhai C, Chen L, Fang Q, Chen W, Jiang X. Experimental study of strain rate effects on normal weight concrete after exposure to elevated temperature. Mater Struct. 2017;50: 40.
  9. Martins DJ, Correia JR, de Brito J. The effect of high temperature on the residual mechanical performance of concrete made with recycled ceramic coarse aggregates. Fire Mater. 2016;40: 289–304.
  10. Abadel AA. Rehabilitation of post-heated rectangular reinforced concrete columns using different strengthening configuration. Struct. Concr. 2023. doi: 10.1002/SUCO.202300521
  11. Khan MS, Abbas H. Performance of concrete subjected to elevated temperature. Eur J Env. Civ En. 2016;20: 532–543.
  12. Abadel AA, Khan MI, Masmoudi R. Axial capacity and stiffness of post-heated circular and square columns strengthened with carbon fiber reinforced polymer jackets. Structures. 2021;33: 2599–2610. doi: 10.1016/j.istruc.2021.05.081
  13. Abadel AA, Masmoudi R, Iqbal Khan M. Axial behavior of square and circular concrete columns confined with CFRP sheets under elevated temperatures: Comparison with welded-wire mesh steel confinement. Structures. 2022;45: 126–144. doi: 10.1016/J.ISTRUC.2022.09.026
  14. Drzymała T, Jackiewicz-Rek W, Tomaszewski M, Kuś A, Gałaj J, Šukys R. Effects of high temperature on the properties of high performance concrete (HPC). ProcediaEng. 2017;172: 256–263.
  15. Elsanadedy HM. Residual compressive strength of high-strength concrete exposed to elevated temperatures. Adv Mater Sci Eng. 2019.
  16. Abbas H, Al-Salloum YA, Elsanadedy HM, Ann ATH. Models for prediction of residual strength of HSC after exposure to elevated temperature. Fire Saf J. 2019;106: 13–28.
  17. Al-Salloum YA, Elsanadedy HM, Abadel AA. Behavior of FRP-confined concrete after high temperature exposure. Constr Build. 2011;25: 838–850. doi: 10.1016/j.conbuildmat.2010.06.103
  18. Phan LT, Lawson JR, Davis FL. Effects of elevated temperature exposure on heating characteristics, spalling, and residual properties of high performance concrete. Mater Struct. 2001 342. 2001;34: 83–91. doi: 10.1007/BF02481556
  19. Vkr K, Wang TC, Cheng FP. Predicting the fire resistance behaviour of high strength concrete columns. Cem Concr Comp 2004;26: 141–153.
  20. Aslani F, Bastami M. Constitutive relationships for normal-and high-strength concrete at elevated temperatures. ACI Mater J. 2011;108: 355–364. doi: 10.14359 /51683106
  21. Abadel A, Abbas H, Albidah A, Almusallam T, Al-Salloum Y. Effectiveness of GFRP strengthening of normal and high strength fiber reinforced concrete after exposure to heating and cooling. Eng Sci Technol an Int J. 2022;36: 101147. doi: 10.1016/J.JESTCH.2022.1011 47
  22. Gong W, Ueda T. Basic study on chloride-induced steel corrosion in concrete subjected to heating up to 300°C. J Soc Mater Sci Japan. 2018;67: 738–745. doi: 10.247 2/jsms.67.738
  23. Choe G, Kim G, Gucunski N, Lee S. Evaluation of the mechanical properties of 200 MPa ultra-high-strength concrete at elevated temperatures and residual strength of column. Constr Build Mater. 2015;86: 159–168.
  24. Lee C, Kee S, Kang J, Choi B, Lee J. Interpretation of impact-echo testing data from a fire-damaged reinforced concrete slab using a discrete layered concrete damage model. Sensors. 2020;20: 5838. doi: 10.3390/s20205838
  25. Vu G, Timothy J, Saenger E, Meschke G. Damage identification in concrete using multiscale computational modeling and convolutional neural networks. Pamm. 2021;21. doi: 10.1002/pamm.202100249
  26. Li Z, Xu J, Bai E. Static and dynamic mechanical properties of concrete after high temperature exposure. Mater Sci Eng. 2012;544: 27–32.
  27. Chen L, Fang Q, Jiang X, Ruan Z, Hong J. Combined effects of high temperature and high strain rate on normal weight concrete. Int J Impact Eng. 2016;2015: 25–37.
  28. Xiao J, Li Z, Xie Q, Shen L. Effect of strain rate on compressive behaviour of high-strength concrete after exposure to elevated temperatures. Fire Saf J. 2016;83: 25–37. doi: 10.1016/J.FIRESAF.2016.04.006
  29. Poon CS, Azhar S, Anson M, Wong YL. Comparison of the strength and durability performance of normaland high-strength pozzolanic concretes at elevated temperatures. Cem Concr Res. 2001;31: 1291–1300. doi: 10.1016/S0008-8846(01)00580-4
  30. Bastami M, Chaboki-Khiabani A, Baghbadrani M, Kordi M. Performance of high strength concretes at elevated temperatures. Sci Iran. 2011;18: 1028–1036. doi: 10.1016/j.scient.2011.09.001
  31. Ning X, Li J, Li Y. An explorative study into the influence of different fibers on the spalling resistance and mechanical properties of self-compacting concrete after exposure to elevated temperatures. Appl Sci. 2022;12: 12779. doi: 10.3390/APP122412779
  32. Freitas Resende H, Nascimento Arroyo F, Dias Reis E, Chahud E, Ferreira dos Santos H, Tostes Linhares JA, Garcez de Azevedo AR, Christoforo AL, Melgaço Nunes Branco LA. Estimation of physical and mechanical properties of high-strength concrete with polypropylene fibers in high-temperature condition. J Mater Res Technol. 2023;24: 8184–8197. doi: 10.1016/J.JMRT.2 023.05.085
  33. Bayasi Z, Al Dhaheri M. Effect of exposure to elevated temperature on polypropylene fiber-reinforced concrete. Mater J. 2002;99: 22–26.
  34. Bangi MR, Horiguchi T. Effect of fibre type and geometry on maximum pore pressures in fibre-reinforced high strength concrete at elevated temperatures. Cem Concr Res. 2012;42: 459–466. doi: 10.1016/J.CEMCONRES.2011.11.014
  35. Novák J, Kohoutková A. Fire response of Hybrid Fiber Reinforced Concrete to High Temperature. Procedia Eng. 2017;172: 784–790. doi: 10.1016/j.proeng.201 7.02.123
  36. Varona FB, Baeza FJ, Bru D, Ivorra S. Influence of high temperature on the mechanical properties of hybrid fibre reinforced normal and high strength concrete. Constr Build Mater. 2018;159: 73–82. doi: 10.1016/J.CONB UILDMAT.2017.10.129
  37. Siddika A, Shojib M, Hossain M, Mamun M, Alyousef R, Amran M. Flexural performance of wire mesh and geotextile-strengthened reinforced concrete beam. Sn Appl Sci. 2019;1. doi: 10.1007/s42452-019-1373-8
  38. Dębska A, Gwoździewicz P, Seruga A, Balandraud X, Destrebecq J. The application of ni–ti sma wires in the external prestressing of concrete hollow cylinders. Materials (Basel). 2021;14: 1354. doi: 10.3390/ma1406 1354
  39. El-sayed TA. Axial compression behavior of ferrocement geopolymer HSC Columns. Polym. 2021;13: 3789. doi: 10.3390/POLYM13213789
  40. Mourad SM, Shannag MJ. Repair and strengthening of reinforced concrete square columns using ferrocement jackets. Cem. 2012;34: 288–294. doi: 10.1016/j.cemconcomp.2011.09.010
  41. Elsibaey M, Awadallah Z, Zakaria M, Farghal O. Strengthening of reinforced concrete square columns by means of ferro cement jacket. Jes J Eng Sci. 2020;48(5): 888–909. doi: 10.21608/jesaun.2020.118571
  42. Eltaly BA, Shaheen YB, EL-boridy AT, Fayed S. Ferrocement composite columns incorporating hollow core filled with lightweight concrete. Eng Struct. 2023;280: 115672. doi: 10.1016/j.engstruct.2023.115672
  43. Alobaidy QNA, Abdulla AI, Al-Mashaykhi M. Shear behavior of hollow ferrocement beam reinforced by steel and fiberglass meshes. Tikrit J Eng Sci. 2022;29: 27–39. doi: 10.25130/tjes.29.4.4
  44. Mabrouk R, Awad M, Abdelkader N, Kassem M. Strengthening of reinforced concrete short columns using ferrocement under axial loading. J Eng Res. 2022;6(3): 32-48. doi: 10.21608/erjeng.2022.154329.1083
  45. Hadi MN, Algburi AHM, Sheikh MN, Carrigan AT. Axial and flexural behaviour of circular reinforced concrete columns strengthened with reactive powder concrete jacket and fibre reinforced polymer wrapping. Constr Build Mater. 2018;172: 717–727. doi: 10.1016/j.conbuildmat.2018.03.196
  46. Kaish ABMA, Jamil M, Raman SN, Zain MFM, Nahar L. Ferrocement composites for strengthening of concrete columns: A review. Constr Build Mater. 2018;160: 326–340. doi: 10.1016/J.CONBUILDMAT.2017.11.054
  47. Kondraivendhan B, Pradhan B. Effect of ferrocement confinement on behavior of concrete. Constr Build. 2009;23: 1218–1222.
  48. Harmathy TZ, Berndt JE. Hydrated Portland cement and lightweight concrete at elevated temperatures. Am Concr Inst. 1966;63: 93–112.
  49. ISO. Fire-resistance tests – elements of building construction – part 1: General requirements. 1999. https://www.iso.org/standard/2576.html (accessed December 25, 2021).
  50. ASTM-C39. Standard Test Method for Compressive Strength of Cylindrical Concrete. West Conshohocken, PA: ASTM International, 2021. https://www.astm.org/c 0039_c0039m-21.html%0Ahttps://www.astm.org/Stand ards/C39
  51. Al-Salloum YA, Almusallam TH, Elsanadedy HM, Iqbal RA. Effect of elevated temperature environments on the residual axial capacity of RC columns strengthened with different techniques. Constr Build Mater. 2016;115: 345–361. doi: 10.1016/J.CONBUILDMAT.2016.04. 041
  52. Elsanadedy H, Almusallam T, Al-Salloum Y, Iqbal R. Effect of high temperature on structural response of reinforced concrete circular columns strengthened with fiber reinforced polymer composites. J Compos Mater. 2017;51: 333–355. doi: 10.1177/0021998316645171/ASSET/IMAGES/LARGE/10.1177_0021998316645171-FIG20.JPEG
  53. Alshaikh, I. M., Abu Bakar, B. H., Alwesabi, E. A., Abadel, A. A., Alghamdi, H., & Wasim, M.. An Experimental Study on Enhancing Progressive Collapse Resistance Using Steel Fiber-Reinforced Concrete Frame. Journal of Structural Engineering. 2022;148(7): 04022087.
  54. Alwesabi EA, Abu Bakar BH, Alshaikh IMH, Akil HM. Impact resistance of plain and rubberized concrete containing steel and polypropylene hybrid fiber. Mater Today Commun. 2020;25: 101640. doi: 10.1016/J.MT COMM.2020.101640
  55. Xiao J, Falkner H. On residual strength of high-performance concrete with and without polypropylene fibres at elevated temperatures. Fire Saf J. 2006;41: 115–121. doi: 10.1016/J.FIRESAF.2005.11.004
  56. Alwesabi EAH, Bakar BHA, Alshaikh IMH, Akil HM. Experimental investigation on mechanical properties of plain and rubberised concretes with steel–polypropylene hybrid fibre. Constr Build Mater. 2020;233: 117194. doi: 10.1016/J.CONBUILDMAT.2019.117194
  57. Abadel A, Abbas H, Almusallam T, Al-Salloum Y, Siddiqui N. Mechanical properties of hybrid fibre-reinforced concrete – analytical modelling and experimental behaviour. Mag Concr Res. 2016;68: 823–843. doi: 10.1680/JMACR.15.00276
DOI: https://doi.org/10.2478/msp-2024-0021 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 52 - 69
Submitted on: May 13, 2024
|
Accepted on: Jun 30, 2024
|
Published on: Aug 1, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Aref A. Abadel, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.