References
- Macchione MA, Lechón Páez S, Strumia MC, Valente M, Mattea F. Chemical overview of gel dosimetry systems: a comprehensive review. Gels. 2022;8(10):663.
- Azadeh P, Amiri S, Mostaar A, Joybari AY, Paydar R. Evaluation of MAGIC-f polymer gel dosimeter for dose profile measurement in small fields and stereotactic irradiation. Radiat Phys Chem. 2022;194:109991.
- Kron T, Metcalfe P, Pope JM. Investigation of the tissue equivalence of gels used for NMR dosimetry. Phys Med Biol. 1993;38:139–50.
- Al-Kahtani HA, Jaswir I, Ismail EA, Ahmed MA, Monsur Hammed A, Olorunnisola S, Octavianti F. Structural characteristics of camel-bone gelatin by demineralization and extraction. Int J Food Prop. 2017;20:11.
- Al-Hassan AA, Abdel-Salam AM, Al Nasiri F, Mousa HM, Nafchi AMM. J Food Meas Charact. 2021;15:4542–51.
- Ahmed MA, Al-Kahtani HA, Jaswir I, AbuTarboush H, Ismail EA. Extraction and characterization of gelatin from camel skin (potential halal gelatin) and production of gelatin nanoparticles. Saudi J Biol Sci. 2020;27(6):1596–601.
- Chan MF, Ayyangar K. Verification of water equivalence of FeMRI gel using Monte Carlo simulation. Med Phys. 1995;22(4):475–8.
- Keall P, Baldock C. A theoretical study of the radiological properties and water equivalence of Fricke and polymer gels used for radiation dosimetry. Australas Phys Eng.Sci Med. 1999;22:85–91.
- Schreiner LJ. Review of Fricke cel dosimeters. J Phys Conf Ser. 2004;3:9–21.
- De Deene Y, Hurley C, Venning A, Vergote K, Mather M, Healy B, et al. A basic study of some normoxic polymer gel dosimeters. Phys Med Biol. 2002;47(19):3441–63.
- Gustavsson H, Bäck SÅJ, Medin J, Grusell E, Olsson LE. Linear energy transfer dependence of a normoxic polymer gel dosimeter investigated using proton beam absorbed dose measurements. Phys Med Biol. 2004;49(17):3847–55.
- De Deene Y. Radiation dosimetry by use of radiosensitive hydrogels and polymers: mechanisms, state-of-the-art and perspective from 3D to 4D. Gels. 2022;8:599.
- Zhang P, Jiang L, Chen H, Hu L. Recent advances in hydrogel-based sensors responding to ionizing radiation. Gels. 2022;8:238.
- Nezhad ZA, Geraily G. A review study on application of gel dosimeters in low energy radiation dosimetry. Appl Radiat Isot. 2022;179:110015.
- Gayol G, Malano F, Montenovo CR, Pérez P, Valente M. Dosimetry effects due to the presence of Fe nanoparticles for potential combination of hyperthermic cancer treatment with MRI-based image-guided radiotherapy. Int J Molec Sci. 2023;24(1):514.
- Soliman YS, Tadros SM, Beshir WB, Saad GR, Gallo S, Ali LI, Naoum MM. Study of Ag nanoparticles in a polyacrylamide hydrogel dosimeters by optical technique. Gels 2022;.8(4):222.
- Sofi MA, Sunitha S, Sofi MA, Khadheer Pasha SK, Choi D. An overview of antimicrobial and anticancer potential of silver nanoparticles. J King Saud Univ – Sci. 2022;34(2): 101791.
- Kortov V. Materials for thermoluminescent dosimetry: current status and future trends. Radiat Meas. 2007;42:576–81.
- Kron T. Thermoluminescence dosimetry and its applications in medicine–Part 1: physics, materials and equipment. Australas Phys Eng Sci Med. 1994;17:175–99.
- Kry SF, Alvarez P, Cygler JE, DeWerd LA, Howell RM, Meeks S, et al. AAPM TG 191: clinical use of luminescent dosimeters: TLDs and OSLDs. Med Phys. 2020;47:e19–e51.
- Lye J, Dunn L, Kenny J, Lehmann J, Kron T, Oliver C, et al. Remote auditing of radiotherapy facilities using optically stimulated luminescence dosimeters. Med Phys. 2014;41:032102.
- Poirier Y, Kuznetsova S, Villarreal-Barajas JE. Characterization of nanodot optically stimulated luminescence detectors and high-sensitivity MCP-N thermoluminescent detectors in the 40–300 kVp energy range. Med Phys. 2018;45:402–13.
- Damulira E, Yusoff MNS, Omar AF, Mohd Taib NH. A review: photonic devices used for dosimetry in medical radiation. Sensors. 2010;19:2226.
- Inoue K, Yamaguchi I, Natsuhori M. Low-dose radiation effects on animals and ecosystems. In: Fukumoto M, editor. Preliminary study on electron spin resonance dosimetry using affected cattle teeth due to the Fukushima Daiichi nuclear power plant accident. Singapore: Springer, 2020.
- Kinoshita A, Baffa O, Mascarenhas S. Electron spin resonance (ESR) dose measurement in bone of Hiroshima A-bomb victim. PLoS ONE 2018;13:e0192444.
- Klein JS, Sun C, Pratx G. Radioluminescence in biomedicine: physics, applications, and models. Phys Med Biol. 2019;64:04TR01.
- Petisiwaveth P, Wanotayan R, Damrongkijudom N, Ninlaphruk S, Kladsomboon, S. Dosimetric performance of poly(vinyl alcohol)/silver nanoparticles hybrid nanomaterials for colorimetric sensing of gamma radiation. Nanomaterials 2022;12(7):1088.
- Titus D, Samuel EJJ, Srinivasan K, Roopan SM, Madhu CS. Silver nitrate-based gel dosimeter. J Phys: Conference Series. 847 012066.
- Vedelago J, Mattea F, Valente M. Integration of Fricke gel dosimetry with Ag nanoparticles for experimental dose enhancement determination in theranostics, Appl Radiat Isot. 2018;141:182–6.
- Badi N, Mekala R, Khasim S, Roy AS, Ignatiev A. Enhanced dielectric performance in PVDF/Al-Al2O3 core-shell nanocomposites. J Mater Sci: Mater Electron. 2018;29:10593–9.
- Wong C. Polymers for electronic and photonic application. Amsterdam: Elsevier; 2013.
- Nafee SS, Hamdalla TA, Shaheen SA. FTIR and optical properties for irradiated PVA–GdCl3 and its possible use in dosimetry. Phase Transit. 2017;90:439.
- Rashad M, Hanafy TA, Issa SAM. Structural, electrical and radiation shielding properties of polyvinyl alcohol doped with different nanoparticles. J Mater Sci—Mater Electron. 2020;31:15192.
- Al Misned G, Akman F, AbuShanab WS, Tekin HO, Kaçal MR, Issa SAM, et al. Novel Cu/Zn reinforced polymer composites: experimental characterization for radiation protection efficiency (RPE) and shielding properties for alpha, proton, neutron, and gamma radiations. Polymers. 2021;13:3157.
- Abdalsalam AH, Sakar E, Kaky KM, Mhareb MHA, Sakar BC, Sayyed MI, Gürol A. Investigation of gamma ray attenuation features of bismuth oxide nano powder reinforced high-density polyethylene matrix composites. Radiat Phys Chem. 2020;168:108537.
- Akman F, Kaçal MR, Almousa N, Sayyed MI, Polat H. Gamma-ray attenuation parameters for polymer composites reinforced with BaTiO3 and CaWO4 compounds. Prog Nucl Energy. 2020;121:103257.
- Hamdalla TA, Nafee SS. Bragg wavelength shift for irradiated polymer fiber Bragg grating. Opt Laser Technol. 2017;74:167.
- Pai S, Das IJ, Dempsey JF, Lam KL, Losasso TJ, Olch AJ, et al. TG-69: radiographic film for megavoltage beam dosimetry. Med Phys. 2007;34:2228.
- Hassan N, Ahmad T, Zain NM, Awang SR. Identification of bovine, porcine and fish gelatin signatures using chemometrics fuzzy graph method. Sci Rep. 2021;11:9793.
- Hashim DM, Che Man YB, Norakasha R, Shuhaimi M, Salmah Y, Syahariza ZA. Potential use of Fourier transform infrared spectroscopy for differentiation of bovine and porcine gelatins. Food Chem. 2010;118(3):856–60.
- Zilhadia KF, Betha OS, Supandi S. Diferensiasi gelatin sapi dan gelatin babi pada gummy vitamin C nmenggunakan methode kombinasi spektroskopi Fourier transform infrared (FTIR) dan principal component analysis (PCA). Pharm Sci Res. 2018;5(2):90–6.
- Barth A. Infrared spectroscopy of proteins. Biochim Biophys Acta (BBA)-Bioenerg. 2007;1767:1073–101.
- Al-Hassan AA, Abdel-Salam A.M, Al Nasiri F, Mousa HM, Nafch AM. Extraction and characterization of gelatin developed from camel bones. J Food Meas Charact. 2021;15:4542–51.
- Al-Kahtani HA, Jaswir I, Ismail EA, Ahmed MA, Hammed AM, Olorunnisola S, Octavianti F. Structural characteristics of camel-bone gelatin by demineralization and extraction. Int J Food Prop. 2017;20:2559–68.
- Fawale OS, Abuibaid A, Hamed F, Kittiphattanabawon P, Maqsood S. Molecular, structural, and rheological characterization of camel skin gelatin extracted using different pretreatment conditions. Foods. 2021;10: 1563.
- Kong J, Yu S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin. 2007;39:549–59.
- Nur Hanani ZA, Roos YH, Kerry JP. Fourier transform infrared (FTIR) spectroscopic analysis of biodegradable gelatin films immersed in water. Int Congr Eng Food, Proc. 2011.
- Alim-Al-Razy M, Bayazid GMA, Rahman RU, Bosu R, Shamma SS. Silver nanoparticle synthesis, UV-Vis spectroscopy to find particle size and measure resistance of colloidal solution. J Phys. 2020;1706:012020.
- Fuliful F, Hashim A, Madlool R. Calculating the X-ray attenuation coefficients of gelatin as human tissue substitute. Austral J Basic Appl Sci. 2017;11:21.