References
- Ji H, Ren K, Ding L, Wang T, Li JM, Yang J. Molecular dynamics simulation of the interaction between cracks in single-crystal aluminium. Mater Today Commun. 2022;30:103020.
- Liang Y, Qing L, Yu H, Huili Z, Yuxin W. Microstructure and mechanical properties of selective laser melted 18Ni300 steel. Mater Sci-Poland. 2022;40(3):64-71.
- Wang W, Xiao Y, Guo N, Min J. Finite element analysis of bipolar plate stamping based on a Yld2000 yield model. Comput Methods Mater Sci. 2022;22(1):7-12.
- Sabry I, Hewidy AM. Underwater friction-stir welding of a stir-cast AA6061-SiC metal matrix composite: optimization of the process parameters, microstructural characterization, and mechanical properties. Mater Sci-Pol. 2022;40(1):101-15.
- Gouldstone A, Chollacoop N, Dao M, Li J, Minor AM, Shen Y. Indentation across size scales and disciplines: Recent developments in experimentation and modelling. Acta Mater. 2007;55(12):4015-39.
- Swietlicki A, Walczak M, Szala M. Effect of shot peening on corrosion resistance of additive manufactured 174PH steel. Mater Sci-Pol. 2022;40(3):135-51.
- Tabor D. The Hardness of Metals. New York: Oxford University Press; 1951.
- Potts D, Axelsson K, Grande L, Schweiger H, Long M. Guidelines for the use of advanced numerical analysis. London: Thomas Telford Publishing; 2002.
- Fischer-Cripps A. Nanoindentation. New York: Springer-Verlag; 2004.
- Madej L, Legwand A, Setty M, Mojzeszko M, Perzyn-ski K, Roskosz S, Chraponski J. Evaluation of capabilities of the nanoindentation test in the determination of flow stress characteristics of the matrix material in porous sinters. Arch CivMechEng. 2022;22:21.
- Hansson T, Oostenbrink C, van Gunsteren W. Molecular dynamics simulations. Curr Opin Struct Biol. 2002;12:190-6.
- Hollingsworth SA, Dror RO. Molecular dynamics simulation for all. Neuron. 2018;99:1129-43.
- Wieczorek G, Niedzialek D. Molecular dynamics. Hoboken, NJ: John Wiley & Sons; 2020.
- Karplus M, McCammon JA. Molecular dynamics simulations of biomolecules. Nat Struct Mol Biol. 2002;9:646-52.
- van Gunsteren WF, Berendsen HJC. Computer simulation of molecular dynamics: methodology, applications, and perspectives in chemistry. Angew Chem /nt Ed. 1990;29:992-1023.
- Shuichi N. Constant temperature molecular dynamics methods. Prog TheorPhys Suppl. 1991;103:1-46.
- Kus W, Mrozek A. Quantum-inspired evolutionary optimization of SLMoS2 two-phase structures. Comput Methods Mater Sci. 2022;22(2):67-78.
- Leimkuhler B, Matthews C. Molecular dynamics: Inter-disciplinary applied mathematics. Berlin; Springer; 2015.
- Alonso-Blanco RJ, Muñoz-Díaz J. Newton’s second law in field theory. Differ Geom Appl. 2021;79:101814.
- Martys NS, Mountain RD. Velocity Verlet algorithm for dissipative-particle-dynamics-based models of suspensions. Phys Rev E. 1999;59:3733-6.
- Abbasbandy S, Bervillier C. Analytic continuation of Taylor series and the boundary value problems of some nonlinear ordinary differential equations. Appl Math Comput. 2011;218:2178-99.
- Monk JD, Haskins JB, Bauschlicher CW, Lawson JW. Molecular dynamics simulations of phenolic resin: construction of atomistic models. Polymer 2015;62:39-49.
- Daw MS, Baskes MI. Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B. 1984;29:6443-53.
- Daw MS, Baskes MI, Foiles MS. The embedded-atom method: a review of theory and applications. Mater Sci Rep. 1993;9:251-310.
- Mishin Y, Farkas D, Mehl M, Papaconstantopoulos D. Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys Rev B. 1998;59:3393-407.
- LAMMPS documentation. 21 Nov 2023 [Accessed on 2023/11/29]. Available via: https://docs.lammps.org/ Manual.html
- Thompson PA, Aktulga HM, Berger R, Bolintineanu SD, Brown WM, Crozier PS, et al. LAMMPS—a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput Phys Commun. 2022;271:108171.
- Atomsk. 2010 [Accessed on 2023/11/29]. Available via: https://atomsk.univ-lille.fr/doc.php
- Hirel P. Atomsk: A tool for manipulating and converting atomic data files. Comput Phys Commun. 2015;197:212-9.
- Lee KW, Lee SH, Noh KH, Park JY, Cho YJ, Kim SH. Theoretical and numerical analysis of the mechanical responses of BCC and FCC lattice structures. J Mech Sci Technol. 2019;33:2259-66.
- Du Q, Faber V, Gunzburger M. Centroidal voronoi tessellations: applications and algorithms. SIAM Rev. 1999;41:637-676.
- Falco S, Jiang J, De Cola F, Petrinic N. Generation of 3D polycrystalline microstructures with a conditioned Laguerre-Voronoi tessellation technique. Comput Mater Sci. 2017;136:20-8.
- Zong W, Wu D, Li Z. Strength dependent design method for the crystal orientation of diamond Berkovich indenter. Mater Design. 2016;89:1057-70.
- Zong WJ, Wu D, He CL. Radius and angle determination of diamond Berkovich indenter. Measurement. 2017;104:243-52.
- Luu H-T, Dang S-L, Hoang T-V, Gunkelmann N. Molecular dynamics simulation of nanoindentation in Al and Fe: on the influence of system characteristics. Appl Surf Sci. 2021;551:149221.