Hanzl P, Zetek M, Bakša T, Kroupa T. The influence of processing parameters on the mechanical properties of SLM parts. Procedia Eng. 2015;100:1405–13. https://doi.org/10.1016/j.proeng.2015.01.510.
Le TP, Wang X, Davidson KP, Fronda JE, Seita M. Experimental analysis of powder layer quality as a function of feedstock and recoating strategies. Addit Manuf. 2021;39:101890. https://doi.org/10.1016/j.addma.2021.101890.
Wang D, Yu C, Ma J, Liu W, Shen Z. Densification and crack suppression in selective laser melting of pure molybdenum. Mater Des. 2017;129:44–52. https://doi.org/10.1016/j.matdes.2017.04.094.
Scime L, Beuth J. Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm. Addit Manuf. 2018;19:114–26. https://doi.org/10.1016/j.addma.2017.11.009.
Maamoun AH, Xue YF, Elbestawi MA, Veldhuis SC. Effect of selective laser melting process parameters on the quality of Al alloy parts: powder characterization, density, surface roughness, and dimensional accuracy. Materials (Basel). 2018;11. https://doi.org/10.3390/ma11122343.
Chen HY, Lin CC, Horng M-H, Chang LK, Hsu JH, Chang TW, et al. Deep learning applied to defect detection in powder spreading process of magnetic material additive manufacturing. Materials (Basel). 2022;15. https://doi.org/10o3390/ma15165662.
Zhang P, Tan J, Tian Y, Yan H, Yu Z. Research progress on selective laser melting (SLM) of bulk metallic glasses (BMGs): a review. Int J Adv Manuf Technol. 2022;118:2017–57. https://doi.org/10.1007/s00170-021-07990-8.
McCann R, Obeidi MA, Hughes C, McCarthy É, Egan DS, Vijayaraghavan RK, et al. In-situ sensing, process monitoring and machine control in laser powder bed fusion: a review. Addit Manuf. 2021;45:102058. https://doi.org/10.1016/j.addma.2021.102058.
Craeghs T, Clijsters S, Yasa E, Kruth J. Online quality control of selective laser melting. Proc 20th Solid Freeform Fabric (SFF) Symp. Austin, TX, USA. 8–10 August 2011.
Lin Z, Lai Y, Pan T, Zhang W, Zheng J, Ge X, Liu Y. A new method for automatic detection of defects in Sselective laser melting based on machine vision. Materials (Basel). 2021;14. https://doi.org/10.3390/ma14154175.
Phuc LT, Seita M. A high-resolution and large field-of-view scanner for in-line characterization of powder bed defects during additive manufacturing. Mater Des. 2019;164:107562. https://doi.org/10.1016/j.matdes.2018.107562.
Fischer FG, Zimmermann MG, Praetzsch N, Knaak C. Monitoring of the powder bed quality in metal additive manufacturing using deep transfer learning. Mater Des. 2022;222:111029. https://doi.org/10.1016/j.matdes.2022.111029.
Liu J, Ye J, Silva Izquierdo D, Vinel A, Shamsaei N, Shao S. A review of machine learning techniques for process and performance optimization in laser beam powder bed fusion additive manufacturing. J Intell Manuf. 2022. https://doi.org/10.1007/s10845-022-02012-0.
Xiao L, Lu M, Huang H. Detection of powder bed defects in selective laser sintering using convolutional neural network. Int J Adv Manuf Technol. 2020;107:2485–96. https://doi.org/10.1007/s00170-020-05205-0.
Li J, Zhou Q, Cao L, Wang Y, Hu J. A convolutional neural network-based multi-sensor fusion approach for in-situ quality monitoring of selective laser melting. J Manuf Syst. 2022;64:429–42. https://doi.org/10.1016/j.jmsy.2022.07.007.