Field I, Kandare E, Dixon B, Tian J, Barter S. Effect of underloads in small fatigue crack growth. Int J Fatigue. 2022;157: 106706. doi:10.1016/j.ijfatigue.2021.106706.
Solovyov L, Solovyov A, Fedorenko V. Thermal method for detecting fatigue cracks in welded steel bridges under random loads. Transp Res Procedia. 2022;61: 588–93. doi:10.1016/j.trpro.2022.01.095.
Mehmanparast A, Nikbin K. Local creep damage effects on subsequent low temperature fatigue crack growth behaviour of thick-walled pressure vessels. Eng Fract Mech. 2022;272: 108720. doi:10.1016/j.engfracmech.2022.108720.
Wang Y, Chen Z, Yan Q, Hu Y, Wang C, Luo W, et al. A dynamic failure analysis methodology for fault diagnosis of fatigue cracks of subsea wellhead connectors with material aging. Process Saf Environ Prot. 2022;159: 36– 52. doi:10.1016/j.psep.2021.12.044.
Yamanoi Y, Maekawa K. Disintegration of low and normal strength concrete in shear localized bands and its constitutive modeling. Eng Struct. 2022;266: 114593. doi:10.1016/j.engstruct.2022.114593.
Cussac P, Gardin C, Pelosin V, Hénaff G, de Baglion L, Ancelet O, et al. Low-cycle fatigue crack initiation and propagation from controlled surface imperfections in nuclear steels. Int J Fatigue. 2020;139: 105703. doi:10.1016/j.ijfatigue.2020.105703.
Alshoaibi AM, Ali Fageehi Y. 3D modelling of fatigue crack growth and life predictions using ANSYS. Ain Shams Eng J. 2022;13(4): 101636. doi:10.1016/j.asej.2021.11.005.
Okada H, Kawai H, Araki K. A virtual crack closureintegral method (VCCM) to compute the energy release rates and stress intensity factors based on quadratic tetrahedral finite elements. Eng Fract Mech. 2008;75: 4466– 85. doi:10.1016/j.engfracmech.2008.04.014.
Leski A. Implementation of the virtual crack closure technique in engineering FE calculations. Finite Elem Anal Des. 2007;43(3): 261–8. doi:10.1016/j.finel.2006.10.004.
Shekhar S, Akhtar N, Hasan S. Study of load bearing capacity of an infinite sheet weakened by multiple collinear straight cracks with coalesced yield zones. Mater Sci Pol. 2021;39(2): 265–84. doi:10.2478/msp-2021-0023.
Zeng Y, Qu Y, Tan Y, Jiang Y, Gu A. Analysis of fatigue cracking of orthotropic steel decks using XFEM. Eng Fail Anal. 2022;140: 106536. doi:10.1016/j.engfailanal.2022.106536.
Hu L, Wang Y, Feng P, Wang H, Qiang H. Debonding development in cracked steel plates strengthened by CFRP laminates under fatigue loading: experimental and boundary element method analysis. Thin-Walled Struct. 2021;166: 108038. doi:10.1016/j.tws.2021.108038.
Liang Y-J, Dávila CG, Iarve EV. A reduced-input cohesive zone model with regularized extended finite element method for fatigue analysis of laminated composites in Abaqus. Compos Struct. 2021;275: 114494. doi:10.1016/j.compstruct.2021.114494.
Kikuchi M, Wada Y, Li Y. Crack growth simulation in heterogeneous material by S-FEM and comparison with experiments. Eng Fract Mech. 2016;167: 239–47. doi:10.1016/j.engfracmech.2016.03.038.
Suga K, Kikuchi M, Wada Y, Kawai H. Study on fatigue growth of multi-surface flaws in shaft under rotary bending by S-FEM. Eng Fract Mech. 2016;1–8. doi:10.1016/j.engfracmech.2016.11.001.
Wada Y, Kikuchi M, Yamada S, Serizawa R, Li Y. Fatigue growth of internal flaw: simulation of subsurface crack penetration to the surface of the structure. Eng Fract Mech. 2014;123: 100–15. doi:10.1016/j.engfracmech.2014.03.016.
Kikuchi M, Wada Y, Shimizu Y, Li Y. Crack growth analysis in a weld-heat-affected zone using S-version FEM. Int J Press Vessels Pip. 2012;90–91: 2–8. doi:10.1016/j.ijpvp.2011.10.001.
Belyamna MA, Zeghida C, Tlili S, Guedri A. Piping reliability prediction using Monte Carlo simulation and artificial neural network. Procedia Struct Integrity. 2022;41: 372–83. doi:10.1016/j.prostr.2022.05.043.
Jiang S, Zhang W. A hybrid approach of modified bootstrap and physics-based methods for probabilistic fatigue life prediction considering overload effects. Probab Eng Mech. 2022;70: 103343. doi:10.1016/j.probengmech.2022.103343.
Okada H, Endoh S, Kikuchi M. On fracture analysis using an element overlay technique. Eng Fract Mech. 2005;72(5): 773–89. doi:10.1016/j.engfracmech.2004.05.003.
Okada H, Higashi M, Kikuchi M, Fukui Y, Kumazawa N. Three dimensional virtual crack closure-integral method (VCCM) with skewed and non-symmetric mesh arrangement at the crack front. Eng Fract Mech. 2005;72(11): 1717–37. doi:10.1016/j.engfracmech.2004.12.005.
Richard HA, Fulland M, Sander M. Theoretical crack path prediction. Fatigue Fract Eng Mater Struct. 2005;28(1–2): 3–12. doi:10.1111/j.1460-2695.2004.00855.x.
Liu Y, Mahadevan S. Probabilistic fatigue life prediction using an equivalent initial flaw size distribution. Int J Fatigue. 2009;31(3): 476–87. doi:10.1016/j.ijfatigue.2008.06.005.
Newman JC, Raju IS. An empirical stress-intensity factor equation for the surface crack. Eng Fract Mech. 1981;15(1–2): 185–92. doi:10.1016/0013-7944(81)90116-8.
Newman I, Raju I. Stress intensity factor equations for cracks in three-dimensional finite bodies subjected to tension and bending loads. NASA Technical Memorandum. 1984;85.
Akramin MRM, Ariffin AK, Kikuchi M, Abdullah S. Sampling method in probabilistic S-version finite element analysis for initial flaw size. J Braz Soc Mech Sci Eng. 2017;39(1): 357–65. doi:10.1007/s40430-016-0549-z.