Kooij S, Astefanei A, Corthals GL, Bonn D. Size distributions of droplets produced by ultrasonic nebulizers. Sci Rep. 2019;9:6128. doi:10.1038/s41598-019-42599-8.
Aghajani S, Accardo A, Tichem M. Process and nozzle design for high-resolution dry aerosol direct writing (dADW) of sub-100 nm nanoparticles. Addit Manuf. 2022;54: 102729. doi:10.1016/j.addma.2022.102729.
Chen G, Gu Y, Tsang H, Hines DR, Das S. The effect of droplet sizes on overspray in aerosol-jet printing. Adv Eng Mater. 2018;20, 1701084. doi:10.1002/adem.201701084.
Rühle F, Schaaf C, Stark H. Optimal control of colloidal trajectories in inertial microfluidics using the Saffman effect. Micromachines (Basel). 2020;11: 592. doi:10.3390/MI11060592.
Hoey JM, Lutfurakhmanov A, Schulz DL, Akhatov IS. A review on aerosol-based direct-write and its applications for microelectronics. J Nanotechnol. 2012, 324380. doi:10.1155/2012/324380.
Rajan R, Pandit AB. Correlations to predict droplet size in ultrasonic atomisation. Ultrasonics. 2001;39(4): 235–55. doi:10.1016/s0041-624x(01)00054-3.
Lozano A, García JA, Alconchel J, Barreras F, Calvo E, Santolaya JL. Influence of liquid properties on ultrasonic atomization. ILASS–Europe 2017, 28th Conference on Liquid Atomization and Spray Systems, 6–8 September 2017, Valencia, Spain; doi:10.4995/ilass2017.2017.4588.
Shardt N, Wang Y, Jin Z, Elliott JAW. Surface tension as a function of temperature and composition for a broad range of mixtures. Chem Eng Sci. 2021;230: 116095. doi:10.1016/j.ces.2020.116095.
Gañán-Calvo AM. Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams. 1998, 80, 2–12 doi: 10.1103/Phys-RevLett.80.285
Ohnesorge WV. Die Bildung von Tropfen an Düsen und die Auflösung flüssiger Strahlen. Zeitschrift Für Angewandte Mathematik Und Mechanik. 1936;16: 355–8. doi:10.1002/zamm.19360160611.
Yakimets I, MacKerron D, Giesen P, Kilmartin KJ, Goorhuis M, Meinders E, et al. Polymer substrates for flexible electronics: achievements and challenges. Adv Mat Res. 2010;93–94: 5–8. doi:10.4028/www.scientific.net/AMR.93-94.5.
Zhang Y, Hu G, Liu Y, Wang J, Yang G, Li D. Suppression and utilization of satellite droplets for inkjet printing: a review. Processes. 2022;10: 932. doi:10.3390/pr10050932.
Taylor GI. The formation of emulsions in definable fields of flow. Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character. 1934;146: 501–23. doi:10.1098/rspa.1934.0169.
Sibillo V, Pasquariello G, Simeone M, Cristini V, Guido S. Drop deformation in microconfined shear flow. Phys Rev Lett. 2006;97: 054502. doi:10.1103/PhysRevLett.97.054502.
Yokoi K. Numerical studies of droplet splashing on a dry surface: triggering a splash with the dynamic contact angle. Soft Matter. 2011;7: 5120–3. doi:10.1039/c1sm05336a.
Motzkus C, Gensdarmes F, Géhin E. Parameter study of microdroplet formation by impact of millimetre-size droplets onto a liquid film. J Aerosol Sci. 2009;40: 680–92. doi:10.1016/j.jaerosci.2009.04.001.
Yonemoto Y, Tashiro K, Shimizu K, Kunugi T. Predicting the splash of a droplet impinging on solid substrates. Sci Rep. 2022;12,5093. doi:10.1038/s41598-022-08852-3.
Motzkus C, Gensdarmes F, Géhin E. Study of the coalescence/splash threshold of droplet impact on liquid films and its relevance in assessing airborne particle release. J Colloid Interface Sci. 2011;362: 540–52. doi:10.1016/j.jcis.2011.06.031.
Stow CD, Hadfield MG. An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface. 1981;373, 1755, 419–441 doi: 10.1098/rspa.1981.0002.
Latka A, Strandburg-Peshkin A, Driscoll MM, Stevens CS, Nagel SR. Creation of prompt and thin-sheet splashing by varying surface roughness or increasing air pressure. Phys Rev Lett. 2012;109: 054501. doi:10.1103/PhysRevLett.109.054501.
Ebrahim M, Ortega A. Identification of the impact regimes of a liquid droplet propelled by a gas stream impinging onto a dry surface at moderate to high weber number. Exp Therm Fluid Sci. 2017;80: 168–80. doi:10.1016/j.expthermflusci.2016.08.019.
Mezhericher M, Levy A, Borde I. Modelling the morphological evolution of nanosuspension droplet in constant-rate drying stage. Chem Eng Sci. 2011;66: 884–96. doi:10.1016/j.ces.2010.11.028.
Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA. Capillary flow as the cause of ring stains from dried liquid drops. Nature. 1997;389: 827–9. doi:10.1038/39827.
Xiao X, Li G, Liu T, Gu M. Experimental study of the jetting behavior of high-viscosity nanosilver inks in inkjet-based 3d printing. Nanomaterials (Basel). 2022;12: 3076. doi:10.3390/nano12173076.
Kwon KS. Experimental analysis of waveform effects on satellite and ligament behavior via in situ measurement of the drop-on-demand drop formation curve and the instantaneous jetting speed curve. J Micromech Microeng. 2010;20: 115005. doi:10.1088/0960-1317/20/11/115005.
Lin CW, Kuo TH, Huang SH, Kuo YM, Wu WJ, Chen CC. Characterization of a piezoelectric inkjet aerosol generator for the study of bioaerosol survivability. Aerosol Air Qual Res. 2019;19: 959–70. doi:10.4209/aaqr.2018.07.0254.
Reitelshöfer S, Göttler M, Schmidt P, Treffer P, Landgraf M, Franke J. Aerosol-jet-printing silicone layers and electrodes for stacked dielectric elastomer actuators in one processing device. In: Proceeding of SPIE 9798, Electroactive Polymer Actuators and Devices (EAPAD) 2016, 15 April 2016; 2016, p.97981Y. doi:10.1117/12.2219226.