Have a personal or library account? Click to login

Damage to inverse hybrid laminate structures: an analysis of shear strength test

Open Access
|Jul 2022

References

  1. Kavitha K, Vijayan R, Sathishkumar T. Fibre-metal laminates: a review of reinforcement and formability characteristics. Mater Today Proc. 2020;22:601–5.
  2. Drossel WG, Riemer M, Scholz P, Osiecki T, Kroll L, Frankiewicz M, et al. Forming induced interface structures for manufacturing hybrid metal composites. CIRP Ann. 2020;69(1):253–6.
  3. Osiecki T, Gerstenberger C, Timmel T, Frankiewicz M, Dziedzic R, Scholz P, et al. Inverse hybrid laminate for lightweight applications. Key Eng Mater. 2020;847:40–5.
  4. Ding Z, Wang H, Luo J, Li N. A review on forming technologies of fibre metal laminates. Int J Light Mater Manuf. 2021;4(1):110–26.
  5. Stefaniak D, Prussak R. Chances and challenges in the application of fiber metal laminates. Adv Mater Lett. 2019;10(2):91–7.
  6. Zhang X, Chen Y, Hu J. Recent advances in the development of aerospace materials. Prog Aerosp Sci. 2018;97:22–34.
  7. Botelho EC, Silva RA, Pardini LC, Rezende MC. A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures. Mater Res. 2006;9(3):247–56.
  8. Heggemann T, Homberg W. Deep drawing of fiber metal laminates for automotive lightweight structures. Compos Struct. 2019;216(February):53–7.
  9. Bambach MRR. Fibre composite strengthening of thin steel passenger vehicle roof structures. Thin-Walled Struct. 2014;74:1–11.
  10. Vermeeren CAJR. An historic overview of the development of fibre metal laminates. Appl Compos Mater. 2003;10(4–5):189–205.
  11. Zopp C, Dittes A, Nestler D, Scharf I, Kroll L, Lampke T. Quasi-static and fatigue bending behavior of a continuous fiber-reinforced thermoplastic/metal laminate. Compos Part B Eng. 2019;174(June), p.107043.
  12. Nestler D, Trautmann M, Nendel S, Wagner G, Kroll L. Innovative hybride Laminate aus Aluminiumlegierungsfolien und faserverstärkten thermoplastischen Schichten. Materwiss Werksttech. 2016;47(11):1121–31.
  13. Osman E, Rashid MWA, Abd Manaf ME, Moriga T, Kamarudin H. Influence of hygrothermal conditioning on the properties of compressed kenaf fiber/epoxy reinforced aluminium laminates. J Mech Eng Sci. 2020;14(4):7405–15.
  14. Heggemann T, Homberg W, Sapli H. Combined curing and forming of fiber metal laminates. Procedia Manuf. 2020;47(2019):36–42.
  15. Liu C, Du D, Li H, Hu Y, Xu Y, Tian J, et al. Interlaminar failure behavior of GLARE laminates under short-beam three-point-bending load. Compos Part B Eng. 2016;97(May):361–7.
  16. Pahr DH, Rammerstorfer FG, Rosenkranz P, Humer K, Weber HW. A study of short-beam-shear and double-lap-shear specimens of glass fabric/epoxy composites. Compos Part B Eng. 2002;33(2):125–32.
  17. Chen Y, Wang Y, Wang H. Research progress on inter-laminar failure behavior of fiber metal laminates. Adv Polym Technol. 2020:1–20.
  18. Bieniaś J, Jakubczak P, Droździel M, Surowska B. Interlaminar shear strength and failure analysis of aluminium-carbon laminates with a glass fiber interlayer after moisture absorption. Materials (Basel). 2020;13(13):1–14.
  19. Hinz S, Omoori T, Hojo M, Schulte K. Damage characterisation of fibre metal laminates under interlaminar shear load. Compos Part A Appl Sci Manuf. 2009;40(6–7):925–31.
  20. Bellini C, Di Cocco V, Sorrentino L. Interlaminar shear strength study on CFRP/Al hybrid laminates with different properties. Frat ed Integrita Strutt. 2020;14(51):442–8.
  21. Bahari-Sambran F, Meuchelboeck J, Kazemi-Khasragh E, Eslami-Farsani R, Arbab Chirani S. The effect of surface modified nanoclay on the interfacial and mechanical properties of basalt fiber metal laminates. Thin-Walled Struct. 2019;144:106343.
  22. Liu J, Xue W. Unconstrained bending and springback behaviors of aluminum-polymer sandwich sheets. Int J Adv Manuf Technol. 2017;91(5–8):1517–29.
  23. Tsukada T, Minakuchi S, Takeda N. Identification of process-induced residual stress/strain distribution in thick thermoplastic composites based on in situ strain monitoring using optical fiber sensors. J Compos Mater. 2019;53(24):3445–58.
  24. Yanagimoto J, Ikeuchi K. Sheet forming process of carbon fiber reinforced plastics for lightweight parts. CIRP Ann. 2012;61(1):247–50.
  25. Hu Y, Zhang Y, Fu X, Hao G, Jiang W. Mechanical properties of Ti/CF/PMR polyimide fiber metal laminates with various layup configurations. Compos Struct. 2019;229(June):111408.
  26. Che L, Zhou Z, Fang G, Ma Y, Dong W, Zhang J. Cured shape prediction of fiber metal laminates considering interfacial interaction. Compos Struct. 2018;194(April):564–74.
  27. Li H, Xu Y, Hua X, Liu C, Tao J. Bending failure mechanism and flexural properties of GLARE laminates with different stacking sequences. Compos Struct. 2018;187:354–63.
  28. Ma Y, Ueda M, Yokozeki T, Sugahara T, Yang Y, Hamada H. A comparative study of the mechanical properties and failure behavior of carbon fiber/epoxy and carbon fiber/polyamide 6 unidirectional composites. Compos Struct. 2017;160:89–99.
  29. Dhaliwal GS, Newaz GM. Experimental and numerical investigation of flexural behavior of carbon fiber reinforced aluminum laminates. J Reinf Plast Compos. 2016;35(12):945–56.
DOI: https://doi.org/10.2478/msp-2022-0016 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 130 - 144
Submitted on: Jan 18, 2022
Accepted on: May 30, 2022
Published on: Jul 13, 2022
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Mariusz Frankiewicz, Grzegorz Ziółkowski, Robert Dziedzic, Tomasz Osiecki, Peter Scholz, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.