References
- Jena PK, Mishra B, RameshBabu M, Babu A, Singh AK, SivaKumar K, et al. Effect of heat treatment on mechanical and ballistic properties of a high strength armour steel. Int J Impact Eng. 2010;37(3):242–9.
- Saha A, Mondal DK, Maity J. Effect of cyclic heat treatment on microstructure and mechanical properties of 0.6 wt% carbon steel. Mater Sci Eng A. 2010;527(16–17):4001–7.
- Hwang B, Lee CG. Influence of thermomechanical processing and heat treatments on tensile and Charpy impact properties of B and Cu bearing high-strength low-alloy steels. Mater Sci Eng A. 2010;527(16–17):4341–6.
- Aghajani A, Somsen C, Pesicka J, Bendick W, Hahn B, Eggeler G. Microstructural evolution in T24, a modified 2(1/4)Cr–1Mo steel during creep after different heat treatment. Mater Sci Eng A. 2009;510(10):130–5.
- Gao M, Zeng X, Hu Q, Yan J. Laser-TIG hybrid welding of ultra-fine grained steel. J Mater Process Technol. 2009;209(2):785–91.
- Wu Z, Jiang Q. Discussion on automatic submerged arc welding of 9%Ni steel in LNG storage tank. Installation. 2006;26(1):42–5.
- Du WS, Cao R, Yan YJ, Tian ZL, Peng Y, Chen JH. Fracture behavior of 9% nickel high-strength steel at various temperatures Part I. Tensile tests. Mater Sci Eng. 2008;86(4):611–25.
- Shin HS, Lee HM, Kim MS. Impact tensile behavior of 9% nickel steel at low temperature. Int J Impact Eng. 2000;24(6):571–81.
- Changhua Y. Research on weldability and welding technology of 9%Ni steel for LNG storage tank construction. Tianjin University; 2008.
- El-Batahgy AM, Gumenyuk A, Gook S, Rethmeier M. Comparison between GTA and laser beam welding of 9%Ni steel for critical cryogenic applications. J Mater Process Technol. 2018;261:193–201.
- Mu W, Li Y, Cai Y, Wang M. Cryogenic fracture toughness of 9%Ni steel flux cored arc welds. J Mater Process Technol. 2018;252:804–12.
- Li Y, Yang F. Research and application of 9Ni steel and its welding materials. Welded Pipe Tube. 2015;11:37–40.
- Liu H, Wang D, Wei H, Zhang Y, Li J, Zhao A. Commercial development of high performance Ni based corrosion resistant alloys. Metal Funct Mater. 2011;7:10–6.
- Yuan L, Hu R, Gao X, Li Z. Generation of high-performance Ni-Cr-Mo-based superalloys via γ to DO22 superlattice ordered phase transformation upon addition of trace alloying elements. Mater Sci Eng A. 2018;738(9):38–43.
- Kamali-Heidari E, Xu ZL, Sohi MH, Ataie A, Kimb JK. Core-shell structured Ni3S2 nanorods grown on interconnected Ni-graphene foam for symmetric supercapacitors. Electrochim Acta. 2018;271(1):507–18.
- Wang ZQ, Wang XL, Nan YR, Shang CJ, Wang XM, Liu K, et al. Effect of Ni content on the microstructure and mechanical properties of weld metal with both-side submerged arc welding technique. Mater Charact. 2018;138(4):67–77.
- Gioielli PC, Zettlemoyer N. SN fatigue tests of 9% nickel steel weldments. Lisbon: Proceedings of the Sixteenth (2007) International Offshore and Polar Engineering Conference; 2007: 3318.
- Hilkes J, Neessen F, Caballero S. Electrodes for welding 9% nickel steel. Weld J. 2004;83(1):30–7.
- Suo J, Feng D, Suo H, Cui W. Study on the dissolution mechanism of WC particles during surfacing process. Funct Mater. 2003;34(2):221–3.
- Lindemer TB, Besmann TM, Johnson CE. Thermodynamic review and calculations—alkali-metal oxide systems with nuclear fuels, fission products, and structural materials. J Nucl Mater. 1981;100(1–3):178–226.
- Guan XR, Zheng Z, Liu EZ, Zhai YC. Effect of Ti on solidification segregation of DZ68 alloy. J Northeast Univ (NATURAL SCIENCE). 2010;31(2):214–6.
- Bagheri Y, Kamali H, Kamali E, Nedjad SH. Formation of nodular bainite in an Fe-9.10Ni-0.06C (wt.%) alloy: a new microstructure for cryogenic steels. Scripta Mater. 2022;208:14343.
- Kinney CC, Pytlewski KR, Khachaturyan AG, Morris JW. The microstructure of lath martensite in quenched 9Ni steel. Acta Mater. 2014;69(5):372–85.
- Chen SH, Zhao MJ, Li XY, Rong LJ. Compression stability of reversed austenite in 9Ni steel. J Mater Sci Technol. 2012;28(6):558–61.