Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, et al. Light-emitting diodes based on conjugated polymers. Nature. 1990;347:539. https://doi.org/10.1038/347539a0
Coe S, Woo WK, Bawendi M, Bulović V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature. 2002;420:800. https://doi.org/10.1038/nature01217
Sjoerd AV, Pablo PB, Natalia Y, Mingjie L, Tze CS, Nripan M, et al. Perovskite materials for light-emitting diodes and lasers. Adv Mater. 2016;28(22):6804–34. https://doi.org/10.1002/adma.201600669
Xing G, Mathews N, Lim SS, Yantara N, Liu X, Sabba D, et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat Mater. 2014;13:476–80. https://doi.org/10.1038/nmat3911
Li G, Rivarola FWR, Davis Nathaniel JLK, Bai S, Jellicoe TC, de la Penã F, et al. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Adv Mater. 2016;28(18):3528–34. https://doi.org/10.1002/adma.201600064
Cho H, Jeong SH, Park MH, Kim YH, Wolf C, Lee CL, et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science. 2015;350(6265):1222. https://doi.org/10.1126/science.aad1818
Li C, Lu X, Ding W, Feng L, Gao Y, Guo Z. Formability of ABX3 (X=F, Cl, Br, I) halide perovskites. Acta Crystallogr Sect B Struct Sci. 2008;64:702. https://doi.org/10.1107/S0108768108032734
Kieslich G, Sun S, Cheetham AK. Solid-state principles applied to organic-inorganic perovskites: new tricks for an old dog. Chem Sci. 2014;5:4712–15. https://doi.org/10.1039/C4SC02211D
Lee JW, Kim DH, Kim HS, Seo SW, Cho SM, Park, NG. Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv Energy Mater. 2015;5. https://doi.org/10.1002/aenm.201501310
Giles EE, Daniel B, Joel T, Samuel DS, Michael BJ, Trystan W, et al. Efficient, semitransparent neutral-colored solar cells based on microstructured formamidinium lead trihalide perovskite. J Phys Chem Lett. 2015;6(1):129–38. https://doi.org/10.1021/jz502367k
Mitzi DB, Field CA, Schlesinger Z, Laibowitz RB. Transport, optical, and magnetic properties of the conducting halide perovskite CH3NH3SnI3. J Solid State Chem. 1995;114:159–63. https://doi.org/10.1006/jssc.1995.1023
Chondroudis K, Mitzi DB. Electroluminescence from an organic-inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers. Chem Mater. 1999;11:3028–30. https://doi.org/10.1021/cm990561t
Pedesseau L. et al. Electronic properties of 2D and 3D hybrid organic/inorganic perovskites for optoelectronic and photovoltaic applications. Opt Quantum Electron. 2014;46;1225–32. https://doi.org/10.1007/s11082-013-9823-9
Kumawat NK, Dey A, Kumar A, Gopinathan SP, Narasimhan K.L, Kabra D. Band gap tuning of CH3NH3Pb(Br1−xClx)3 hybrid perovskite for blue electroluminescence. ACS Appl Mater Interfaces. 2015;7:13119. https://doi.org/10.1021/acsami.5b02159
Eperon GE, Stranks SD, Menelaou C, Johnston MB, Herz LM, Snaith HJ. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci. 2014;7:982–8. https://doi.org/10.1039/C3EE43822H
Noh JH, Im SH, Heo JH, Mandal TN, Seok SI. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 2013;13:1764–9. https://doi.org/10.1021/nl400349b
Hao F, Stoumpos CC, Chang RPH, Kanatzidis MG. Anomalous band gap behavior in mixed sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J Am Chem Soc. 2014;136:8094. https://doi.org/10.1021/ja5033259
Ogomi Y, Morita A, Tsukamoto S, Satiro T, Fujiyama N, Shen Q, et al. CH3NH3SnxPb(1−−x)I3 perovskite solar cells covering up to 1060 nm. J Phys Chem Lett. 2014;5:1004–11. https://doi.org/10.1021/jz5002117
Era M, Morimoto S, Tsutsui T, Saito S. Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4. Appl Phys Lett. 1994;65:676. https://doi.org/10.1063/1.112265
Hong X, Ishihara T, Nurmikko AV. Photoconductivity and electroluminescence in lead iodide based natural quantum well structures. Solid State Commun. 1992;84:657. https://doi.org/10.1016/0038-1098(92)90210-Z
Hattori T, Taira T, Era M, Tsutsui T, Saito S. Highly efficient electroluminescence from a heterostructure device combined with emissive layered-perovskite and an electron-transporting organic compound. Chem Phys Lett. 1996;254:103–8. https://doi.org/10.1016/0009-2614(96)00310-7
Kondo T, Azuma T, Yuasa T, Ito R. Biexciton lasing in the layered perovskite-type material (C6H13NH3)2PbI4. Solid State Commun. 1998;105:253–5. https://doi.org/10.1016/S0038-1098(97)10085-0
Wang J, Wang N, Jin Y, Si J, Tan ZK, Du H, et al. Interfacial control toward efficient and low-voltage perovskite light-emitting diodes. Adv Mater. 2015;27(14):2311–6. https://doi.org/10.1002/adma.201405217
Michael ML, Joël T, Tsutomu M, Takurou NM, Henry JS. Efficient hybrid solar cells based on Meso-Superstructured Organometal Halide Perovskites. Science. 2012;80. https://doi.org/10.1126/science.1228604
Chen S, Roh K, Lee J, Chong WK, Lu Y, Mathews N. et al. A photonic crystal laser from solution based organo-lead iodide perovskite thin films. ACS Nano 2016;10;3959–67. https://doi.org/10.1021/acsnano.5b08153
Young HK et al. Multicolored organic/inorganic hybrid perovskite light emitting diodes. Adv Mater. 2015;27(7):1248–54. https://doi.org/10.1002/adma.201403751
Dou L, Yang Y, You J, Hong Z, Chang WH, Li G, et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat Commun. 2014;5:5404. https://doi.org/10.1038/ncomms6404
Zhuo S, Zhang J., Shi Y, Huang Y, Zhang B. Self-template-directed synthesis of porous perovskite nanowires at room temperature for high-performance visible-light photodetectors. Angew Chem Int Ed. 2015;54:5693. https://doi.org/10.1002/anie.201411956
Maculan G, Sheikh AD, Abdelhady A, Saidaminov MI, Haque MA, Murali B, et al. CH3NH3PbCl3 single crystals: inverse temperature crystallization and visible-blind UV-photodetector. J Phys Chem Lett. 2015;6:3781–6. https://doi.org/10.1021/acs.jpclett.5b01666
Deschler F, Price M, Pathak S, Klintberg LE, Jarausch DD, Higler R, et al.. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J Phys Chem Lett. 2014;5:1421. https://doi.org/10.1021/jz5005285
Saif MHQ, Khan MN, Alqasem A, Hezam M, Aldwayyan AA. Restraining effect of film thickness on the behavior of amplified spontaneous emission from methylammonium lead iodide perovskite. IET Optoelectronics. 2018;13(1):2–6. https://doi.org/10.1049/iet-opt.2018.5035
Zhu, H., et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat Mater. 2015;14:636–42. https://doi.org/10.1038/nmat4271
Zhang Q, Ha ST, Liu X, Sum TC, Xiong Q. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett. 2014;14:5995. https://doi.org/10.1021/nl503057g
Dhanker R., et al. Random lasing in organo-lead halide perovskite microcrystal networks. Appl Phys Lett. 2014;105:151112. https://doi.org/10.1063/1.4898703
Liao Q, Hu K, Zhang HH, Wang XD, Yao JN, Fu HB. Perovskite microdisk microlasers self-assembled from solution. Adv Mater. 2015;27(24):3405. https://doi.org/10.1002/adma.201500449
Chen J, Zhou S, Jin S, Li H, Zhai T, Gaál R, et al. Crystal organometal halide perovskites with promising optoelectronic applications. J Mater Chem C. 2016;4:11–27. https://doi.org/10.1039/C5TC03417E
Audebert P, Clavier G, Alain-Rizzo V, Deleporte E, Zhang S, Lauret JSB, et al. Synthesis of new perovskite luminescent nanoparticles in the visible range. Chem Mater. 2009;21:210–14. https://doi.org/10.1021/cm8020462
Protesescu L, Yakunin S, Bodnarchuk MI, Krieg F, Caputo R, Hendon CH, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015;15:3692–6. https://doi.org/10.1021/nl5048779
Wang Y, Zhi M, Chang YQ, Zhang JP, Chan Y. Stable, ultralow threshold amplified spontaneous emission from CsPbBr3 nanoparticles exhibiting Trion gain. Nano Lett. 2018;18:4976–84. https://doi.org/10.1021/acs.nanolett.8b01817
Yakunin S, Protesescu L, Krieg F, Bodnarchuk MI, Nedelcu G, Humer M, et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat Commun. 2015;6:8056. https://doi.org/10.1038/ncomms9056
De Giorgi ML, Krieg F, Kovalenko MV, Anni M. Amplified spontaneous emission threshold reduction and operational stability improvement in CsPbBr3 nanocrystals films by hydrophobic functionalization of the substrate. Sci Rep. 2019;9:17964. https://doi.org/10.1038/s41598-019-54412-7
Cho C, Palatnik A, Sudzius M, Grodofzig R, Nehm F, Leo K. Controlling and optimizing amplified spontaneous emission in perovskite. ACS Appl Mater Interfaces. 2020;12(31):35242–9. https://doi.org/10.1021/acsami.0c08870
Aleksei OM, Stroganov BV, Günnemann C, Hammouda SB, Shurukhina AV, Lozhkin MS. et al. Amplified spontaneous emission and random lasing in MAPbBr3 halide perovskite single crystals. Adv Optical Mater. 2020;8(17):2000690. https://doi.org/10.1002/adom.202000690
Zhang Q, Su R, Liu X, Xing J, Sum TC, Xiong Q. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv Funct Mater. 2016;26:6238–45. https://doi.org/10.1002/adfm.201601690
Liu S, Sun W, Li J, Gu Z, Wangm K, Xiao S, et al. Random lasing actions in self-assembled perovskite nanoparticles. Opt Eng. 2016;55(5):057102. https://doi.org/10.1117/1.OE.55.5.057102
Wang Y, Xiaoming Li, Song J, Xiao L, Zeng H, Sun H. All-inorganic colloidal perovskite quantum dots: A new class of lasing materials with favorable characteristics. Adv Mater. 2015;27:7101–8. https://doi.org/10.1002/adma.201503573
Ning Z, Gong X, Comin R, Walters G, Fan F, Voznyy O, et al. Quantum-dot-in-perovskite solids. Nature. 2015;324(523):2015. https://doi.org/10.1038/nature14563
Sun C, Zhang Y, Ruan C., et al. Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots. Adv Mater. 2016;28(45):10088–94. https://doi.org/10.1002/adma.201603081
Wei Y, Xiao H, Xie Z., et al. Highly luminescent lead halide perovskite quantum dots in hierarchical CaF2 matrices with enhanced stability as phosphors for white light-emitting diodes. Adv Opt Mater. 2018;6(11):1701343. https://doi.org/10.1002/adom.201701343
Yang G, Fan Q, Chen B, et al. Reprecipitation synthesis of luminescent CH3NH3PbBr3/NaNO3 nano-composites with enhanced stability. J Mater Chem C. 2016;4(48):11387–91. https://doi.org/10.1039/C6TC04069A
Pang X, Zhang H, Xie L, et al. Precipitating CsPbBr3 quantum dots in boro-germanate glass with a dense structure and inert environment toward highly stable and efficient narrow-band green emitters for wide-color-gamut liquid crystal displays. J Mater Chem C. 2019;7(42):13139–48. https://doi.org/10.1039/C9TC04732H
Xiong Q, Huang S, Du J, Tang X, Zeng F, Liu Z, et al. Surface ligand engineering for CsPbBr3 quantum dots aiming at aggregation suppression and amplified spontaneous emission improvement. Adv Opt Mater. 2020;8:2000977. https://doi.org/10.1002/adom.202000977
Moon H, Lee C, Lee W, et al. Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications. Adv Mater. 2019;31(34):1804294. https://doi.org/10.1002/adma.201804294
Yang J, Siempelkamp BD, Liu D., et al. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano. 2015;9(2):1955–63. https://doi.org/10.1021/nn506864k
Christians JA, Miranda HPA, Kamat PV. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J Am Chem Soc 2015;137(4);1530–8. https://doi.org/10.1021/ja511132a
Palazon F, Di SF, Lauciello S, et al. Evolution of CsPbBr3 nanocrystals upon post-synthesis annealing under an inert atmosphere. J Mater Chem C. 2016;4(39):9179–82. https://doi.org/10.1039/C6TC03342C
Huang S, Li Z, Wang B, et al. Morphology evolution and degradation of CH3NH3PbI3 nanocrystals under blue light-emitting diode illumination. ACS Appl Mater Interfaces. 2017;9(8);7249–58. https://doi.org/10.1021/acsami.6b14423
Gong Y, Shen J, Zhu Y, Yang X, Zhang L, Li C. Stretch induced photoluminescence enhanced perovskite quantum dot polymer composites. J Mater Chem C. 2020;8:1413–20. https://doi.org/10.1039/C9TC05966K
Chen LC, Tien CH, Tseng ZL, Dong YS, Yang S. Influence of PMMA on all inorganic halide perovskite CsPbBr3 quantum dots combined with polymer matrix. Materials. 2019;12:985. https://doi.org/10.3390/ma12060985
Khan MN, Al Dwayyan AS, Al Salhi MS. Study on characteristics of silicon nanocrystals within sol-gel host. J Exp Nanosci. 2012;7(2):120. https://doi.org/10.1080/17458080.2010.513016
Khan MN, Al Dwayyan AS. Influence on structural and PL property of nanocrystals silicon doped sol gel matrix. J Optoelectron Adv Mater. 2012;14(5):448.
Khan MN, Al Dwayyan AS, Al Hossain MS. Morphology and optical properties of a porous silicon-doped solgel host. Electron Mater Lett. 2013;9(5):697. https://doi.org/10.1080/17458080.2010.513016
Khan MN, Aldalbahi A, Almohamedi A. Investigation of different colloidal porous silicon solutions and their composite solid matrix rods by optical techniques. J Electron Mater. 2018;47(7):3596–607. https://doi.org/10.1007/s11664-018-6204-y
Khan MN, Aldalbahi A, Al Dwayyan AS. Composite rods based on nanoscale porous silicon in sol–gel silica and ormosil matrices for light-emitting applications. J Sol-Gel Sci Technol. 2017;82:551–62. https://doi.org/10.1007/s10971-017-4309-z
Khan MN, Al Dwayyan AS, Aldalbahi A. Light emitting composite rods based on porous silicon in ormosils and polymer matrices for optical applications. Opt Laser Technol. 2017;91:203–11. https://doi.org/10.1016/j.optlastec.2016.12.035