Have a personal or library account? Click to login

Effect of novel grain refiner and Ni alloying additions on microstructure and mechanical properties of Al-Si9.8-Cu3.4 HPDC castings – optimization using Multi Criteria Decision making approach

Open Access
|May 2022

Figures & Tables

Fig. 1

Sample specimen of HPDC casting (A) Final castings with their dimensions (B) Tensile specimens with their dimensions used for the experimentations. HPDC, High pressure die casting
Sample specimen of HPDC casting (A) Final castings with their dimensions (B) Tensile specimens with their dimensions used for the experimentations. HPDC, High pressure die casting

Fig. 2

(A) XRD results of the Al-3.5FeNb-1.5C master alloy; (B) SEM microstructure of dispersed intermetallic particles extracted from Al-3.5FeNb-1.5C master alloy. XRD, X-ray diffraction
(A) XRD results of the Al-3.5FeNb-1.5C master alloy; (B) SEM microstructure of dispersed intermetallic particles extracted from Al-3.5FeNb-1.5C master alloy. XRD, X-ray diffraction

Fig. 3

Optical microscopic images of experimental castings at 720°C, 750°C, and 780°C: (A–C) without grain refiner, (D–F) 0.1 wt% of Al-3.5FeNb-1.5C, (G–I) 1.0 wt% of Al-3.5FeNb-1.5C
Optical microscopic images of experimental castings at 720°C, 750°C, and 780°C: (A–C) without grain refiner, (D–F) 0.1 wt% of Al-3.5FeNb-1.5C, (G–I) 1.0 wt% of Al-3.5FeNb-1.5C

Fig. 4

(A) Tensile strength values (B) Brinell hardness and microhardness values obtained from experimental runs. (C) and (D) show the optical microscope images of (C) R5 and (D) R25 experimental castings, which have the highest and lowest mechanical properties, respectively. (E) and (F) show the SEM and EDS images of R5, respectively
(A) Tensile strength values (B) Brinell hardness and microhardness values obtained from experimental runs. (C) and (D) show the optical microscope images of (C) R5 and (D) R25 experimental castings, which have the highest and lowest mechanical properties, respectively. (E) and (F) show the SEM and EDS images of R5, respectively

Fig. 5

Effect of process parameters on GRG. GRA, grey relational analysis
Effect of process parameters on GRG. GRA, grey relational analysis

Fig. 6

Effect of process parameters on CC. CC, closeness coefficient
Effect of process parameters on CC. CC, closeness coefficient

Fig. 7

GRG and CC value of each experimental run. CC, closeness coefficient; GRG, Grey relational grade
GRG and CC value of each experimental run. CC, closeness coefficient; GRG, Grey relational grade

Fig. 8

SEM images of Al-Si9.8-Cu3.4 alloy: Experimental runs of (A) R5 at 0.1 wt.% of Al3.5FeNb-1.5C and 0.5 wt.% of Al-6Ni with base alloy and (B) R25 at 1.0 wt.% of Al3.5FeNb-1.5C with base alloy; EDX pattern of (C) Experimental run R5 and (D) Experimental run R25
SEM images of Al-Si9.8-Cu3.4 alloy: Experimental runs of (A) R5 at 0.1 wt.% of Al3.5FeNb-1.5C and 0.5 wt.% of Al-6Ni with base alloy and (B) R25 at 1.0 wt.% of Al3.5FeNb-1.5C with base alloy; EDX pattern of (C) Experimental run R5 and (D) Experimental run R25

Fig. 9

SEM images of fracture pattern of experimental runs of (A) R5 at 0.1 wt.% of Al3.5FeNb-1.5C and 0.5 wt.% of Al-6Ni with base alloy and (B) R25 at 1.0 wt.% of Al3.5FeNb-1.5C with base alloy
SEM images of fracture pattern of experimental runs of (A) R5 at 0.1 wt.% of Al3.5FeNb-1.5C and 0.5 wt.% of Al-6Ni with base alloy and (B) R25 at 1.0 wt.% of Al3.5FeNb-1.5C with base alloy

Composition of Al-Si9_8-Cu3_4 alloy (wt_%) considered for this study

Al%Si%Cu%Fe%Ti%Mg%Ni%Zn%Pb%Sn%Mn%
86.189.8393.4740.1890.1840.0410.0080.0080.0430.0130.007

Input parameters and experimental values of output characteristics along with average porosity values for L27 orthogonal array

Expt. runsInput factorsOutput responsesAverage porosity values
A (°C)B (wt.%)C (wt.%)D (°C)E (MPa)Tensile strengthBrinell hardnessMicrohardness
17200023012218.39851130.88
272000.526018223.76851160.53
37200529024245.50881190.36
47200.1026018239.88901360.26
57200.10.529024249.09911350.25
67200.1523012237.31851360.47
77201029024220.53831120.85
872010.523012214.67831140.71
97201526018208.63861180.75
107500026024217.87851140.95
1175000.529012210.73851160.77
127500523018230.46891160.49
137500.1029012230.19861180.63
147500.10.523018237.29881300.44
157500.1526024212.70851200.62
167501023018208.26801061.01
1775010.526024218.83851130.88
187501529012201.05801080.97
197800029018219.96851150.89
2078000.523024224.58881250.33
217800526012240.50871180.49
227800.1023024238.37881270.46
237800.10.526012240.04901320.48
247800.1529018232.57851140.46
257801026012200.27801070.99
2678010.529018199.68851190.49
277801523024224.74841140.53

Process factors and their levels used in the experiments

Parameter destinationInput parametersParameter rangeLevel 1Level 2Level 3
AMolten metal temperature (°C)720–780720750780
BAl-3.5FeNb-1.5C (wt%)0.0–0.1–1.00.00.11.0
CAl-6Ni (wt%)0.0–0.5–5.00.00.55.0
DDie temperature (°C)230–290230260290
EInjection pressure (MPa)12–24121824

Mean values of GRG at different levels and their main effects

Parameter destinationInput parametersLevel 1Level 2Level 3Max/min
AMolten metal temperature (°C)0.6010.4700.5300.131
BAl-3.5FeNb-1.5C (wt%)0.5160.6830.4030.280
CAl-6Ni (wt%)0.4960.5780.5270.082
DDie temperature (°C)0.5390.5370.5250.015
EInjection pressure (MPa)0.5080.5280.5650.056

Response table of average values of CC for TOPSIS

Parameter destinationInput parametersLevel 1Level 2Level 3Max/min
AMolten metal temperature (°C)0.5500.3710.4780.179
BAl-3.5FeNb-1.5C (wt%)0.4540.7040.2400.464
CAl-6Ni (wt%)0.3990.5400.4600.141
DDie temperature (°C)0.4990.4630.4350.036
EInjection pressure (MPa)0.41470.4650.5190.104

TOPSIS results

Expt. runsNormalizationWeighted normalizationSeparationCC
Tensile strengthBrinell hardnessVickers hardnessTensileBrinellVickersSS+
10.1870.1910.1830.0620.0640.0610.0160.0080.324
20.1920.1910.1880.0640.0640.0630.0140.0100.416
30.2110.1980.1920.0700.0660.0640.0100.0160.628
40.2060.2020.2200.0690.0670.0730.0030.0210.886
50.2140.2040.2180.0710.0680.0730.0010.0230.972
60.2040.1910.2200.0680.0640.0730.0050.0200.786
70.1890.1870.1810.0630.0620.0600.0160.0070.306
80.1840.1870.1840.0610.0620.0610.0170.0070.283
90.1790.1930.1910.0600.0640.0640.0160.0080.350
100.1870.1910.1840.0620.0640.0610.0160.0080.333
110.1810.1910.1880.0600.0640.0630.0160.0080.321
120.1980.2000.1880.0660.0670.0630.0120.0130.511
130.1970.1930.1910.0660.0640.0640.0120.0120.500
140.2040.1980.2100.0680.0660.0700.0050.0180.779
150.1820.1910.1940.0610.0640.0650.0140.0090.391
160.1790.1800.1710.0600.0600.0570.0220.0030.110
170.1880.1910.1830.0630.0640.0610.0160.0080.334
180.1720.1800.1750.0570.0600.0580.0220.0010.059
190.1890.1910.1860.0630.0640.0620.0150.0090.370
200.1930.1980.2020.0640.0660.0670.0090.0140.598
210.2060.1960.1910.0690.0650.0640.0100.0140.582
220.2040.1980.2050.0680.0660.0680.0060.0170.727
230.2060.2020.2130.0690.0670.0710.0040.0200.845
240.2000.1910.1840.0670.0640.0610.0140.0110.452
250.1720.1800.1730.0570.0600.0580.0220.0010.032
260.1710.1910.1920.0570.0640.0640.0180.0080.309
270.1930.1890.1840.0640.0630.0610.0150.0090.380

Normalized data and deviation sequence values of the following characteristics

RunDeviation Tensile strengthSequences Brinell hardness0i) MicrohardnessGRC Tensile strengthBrinell hardnessMicrohardnessGRGRank
10.620.550.770.450.480.390.4420
20.470.550.670.490.480.430.4713
30.070.270.570.870.650.470.666
40.190.090.000.730.851.000.862
50.000.000.031.001.000.940.981
60.240.550.000.680.481.000.724
70.580.730.800.460.410.380.4223
80.690.730.730.420.410.410.4124
90.820.450.600.380.520.450.4515
100.630.550.730.440.480.410.4418
110.510.550.670.390.480.430.4321
120.380.180.670.570.730.430.589
130.380.450.600.570.520.450.5211
140.240.270.200.680.650.710.685
150.740.550.530.400.480.480.4614
160.831.001.000.380.330.330.3525
170.610.550.770.450.480.390.4419
180.971.000.930.340.330.350.3426
190.590.550.700.460.480.420.4516
200.490.270.370.500.650.580.5810
210.170.360.600.740.580.450.598
220.220.270.300.700.650.630.667
230.180.090.130.730.850.790.793
240.330.550.730.600.480.410.4912
250.991.000.970.340.330.340.3427
261.000.550.570.330.480.470.4322
270.490.640.730.500.440.410.4517

Results’ comparison at initial and optimal levels by GRA and TOPSIS methods

S. NoParameterInitial valuePredicted valueExperimental value

A2, B1, C1, D2, E3A1, B2, C2, D1, E3A1, B2, C2, D1, E3
1Tensile strength218.388249.085
2Brinell hardness8591
3Vickers microhardness113135
4Grey relational grade0.43960.80870.9792
5Closeness coefficient0.32420.94810.9715
6Improvement of GRG0.5396
7Improvement of CC-0.6473
DOI: https://doi.org/10.2478/msp-2022-0005 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 9 - 24
Submitted on: Oct 28, 2021
Accepted on: May 30, 2022
Published on: May 25, 2022
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 K. Ch Apparao, Praveen Kumar Bannaravuri, Kumar Swamy Pulisheru, E. D. Francis, Kalakanda Alfred Sunny, Gadudasu Babu Rao, P Freedon Daniel, Anil Kumar Birru, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.