Have a personal or library account? Click to login
Influence of zinc substitution on structural, elastic, magnetic and optical properties of cobalt chromium ferrites Cover

Influence of zinc substitution on structural, elastic, magnetic and optical properties of cobalt chromium ferrites

Open Access
|Jul 2021

References

  1. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, et al. One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater. 2003;15(5):353–89.
  2. Ding J, Jain S, Adeyeye A. Static and dynamic properties of one-dimensional linear chain of nanomagnets. J Appl Phys. 2011;109(7):07D301.
  3. Rani R, Sharma S, Pirota K, Knobel M, Thakur S, Singh M. Effect of zinc concentration on the magnetic properties of cobalt–zinc nanoferrite. Ceram Int. 2012;38(3):2389–94.
  4. Cullity B. Element of X-ray diffraction, Addison-Wesley reading. MA Google Scholar, 1978.
  5. Gabal M, Ahmed M. Structural, electrical and magnetic properties of copper-cadmium ferrites prepared from metal oxalates. J Mater Sci. 2005;40(2):387–98.
  6. Sharma R, Singhal S. Structural, magnetic and electrical properties of zinc doped nickel ferrite and their application in photo catalytic degradation of methylene blue. Phys B Condens Matter. 2013;414:83–90.
  7. Salah L, Moustafa A, Farag IA. Structural characteristics and electrical properties of copper doped manganese ferrite. Ceram Int. 2012;38(7):5605–11.
  8. Shaikh P, Kambale R, Rao A, Kolekar Y. Studies on structural and electrical properties of Co1−xNixFe1.9Mn0.1O4 ferrite. J Alloys Compd. 2009;482(1):276–82.
  9. Humbe AV, Kounsalye JS, Shisode MV, Jadhav K. Rietveld refinement, morphology and superparamagnetism of nanocrystalline Ni0.70−xCuxZn0.30Fe2O4 spinel ferrite. Ceram Int. 2018;44(5):5466–72.
  10. Tatarchuk T, Bououdina M, Paliychuk N, Yaremiy I, Moklyak V. Structural characterization and antistructure modeling of cobalt-substituted zinc ferrites. J Alloys Compd. 2017;694:777–91.
  11. Kadam R, Birajdar A, Alone ST, Shirsath SE. Fabrication of Co0.5Ni0.5CrxFe2−xO4 materials via sol–gel method and their characterizations. J Magn Magn Mater. 2013;327:167–71.
  12. Robertson J. Elements of X-ray diffraction by BD Cullity. International Union of Crystallography; 1979.
  13. Levine B. d-Electron effects on bond susceptibilities and ionicities. Phys Rev B. 1973;7(6):2591.
  14. Groń T. Influence of vacancies and mixed valence on the transport processes in solid solutions with the spinel structure. Philos Mag B. 1994;70(1):121–32.
  15. Pradeep A, Priyadharsini P, Chandrasekaran G. Sol–gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study. J Mag Mag Mater. 2008;320(21):2774–9.
  16. Modi K, Shah S, Pujara N, Pathak T, Vasoya N, Jhala I. Infrared spectral evolution, elastic, optical and thermodynamic properties study on mechanically milled Ni0.5Zn0.5Fe2O4 spinel ferrite. J Mol Struct. 2013;1049:250–62.
  17. Pathak T, Buch J, Trivedi U, Joshi H, Modi K. Infrared spectroscopy and elastic properties of nanocrystalline Mg–Mn ferrites prepared by co-precipitation technique. J Nanosci Nanotechnol. 2008;8(8):4181–7.
  18. Modi K, Gajera J, Pandya M, Vora G, Joshi H. Far-infrared spectral studies of magnesium and aluminum co-substituted lithium ferrites. Pramana. 2004;62(5):1173–80.
  19. Patil V, Shirsath SE, More S, Shukla S, Jadhav K. Effect of zinc substitution on structural and elastic properties of cobalt ferrite. J Alloys Compd. 2009;488(1):199–203.
  20. Sanpo N, Wen C, Berndt CC, Wang J. Antibacterial properties of spinel ferrite nanoparticles. In: Microbial pathogens and strategies for combating them: science, technology and education. Spain: Formatex Research Centre; 2013. pp. 239–50.
  21. Ali AI, Ahmed MA, Okasha N, Hammam M, Son JY. Effect of the La3+ ions substitution on the magnetic properties of spinal Li-Zn-ferrites at low temperature. J Mater Res Technol. 2013;2(4):356–61.
  22. Waldron R. Infrared spectra of ferrites. Physical Review. 1955;99(6):1727.
  23. Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, et al. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc. 2004;126(1):273–9.
  24. Tanaka K, Nakashima S, Fujita K, Hirao K. High magnetization and the Faraday effect for ferrimagnetic zinc ferrite thin film. J Phys Condens Matter. 2003;15(30):L469.
  25. Murumkar V, Modi K, Jadhav K, Bichile G, Kulkarni R. Magnetic and electrical properties of aluminium and chromium co-substituted yttrium iron garnets. Mater Lett. 1997;32(4):281–5.
  26. Polezhaeva O, Yaroshinskaya N, Ivanov V. Synthesis of nanosized ceria with controlled particle sizes and bandgap widths. Russ J Inorg Chem. 2007;52(8):1184–8.
  27. Gilleo M. Superexchange interaction in ferrimagnetic garnets and spinels which contain randomly incomplete linkages. J Phys Chem Solids. 1960;13(1–2):33–9.
  28. Anjum S, Rafique MS, Khaleeq-ur-Rahman M, Siraj K, Usman A, Hussain S, et al. Investigation of induced parallel magnetic anisotropy at low deposition temperature in Ba-hexaferrites thin films. J Magn Magn Mater. 2012;324(5):711–6.
  29. R. Arulmurugan, B. Jeyadevan, G. Vaidyanathan and S. Sendhilnathan, “Effect of Zinc Substitution on Co-Zn and Mn-Zn Ferrite Nanoparticles Prepared by Co-Precipitation,” Journal of Magnetism and Magnetic Materials, Vol. 288, 2005, pp. 470–477.
DOI: https://doi.org/10.2478/msp-2021-0008 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 139 - 151
Submitted on: Apr 15, 2021
|
Accepted on: Apr 16, 2021
|
Published on: Jul 16, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Talat Zeeshan, Safia Anjum, Salma Waseem, Farzana Majid, Muhammad Danish Ali, Ammara Aslam, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.