Have a personal or library account? Click to login
The role of EU cohesion funds in Romanian labour productivity: Insights from machine learning and econometric modelling Cover

The role of EU cohesion funds in Romanian labour productivity: Insights from machine learning and econometric modelling

Open Access
|Jun 2025

Figures & Tables

Figure 1

Research methodology.
Research methodology.

Estimation of the impact of ESIF on labour productivity_

VariableCoefficients
log (EAFRDEMFFpc)7.3573***
log (ERDFpc)3.2260***
log (GFCF)9.5602**
EduLow−1.0459***
PrimGVA1.4592*
CONS49.6282**
N of observations104
N of groups8
F(5,91)25.68
Prob > F 0.0000
F (FE are jointly zero)38.71
Prob > F 0.0000

Empirical results of dynamic Dif-GMM estimation_

VariableCoefficients
LP(−1)0.5863***
log (EAFRDEMFFpc)3.1287***
log (GFCF)7.6210**
EduLow−0.0400**
PrimGVA1.1370**
CONS13.3223*
N of observations96
N of groups8
Wald χ 2 (5)5725.69
Prob > χ 2 0.0000

Estimated variable coefficients for modelling labour productivity_

RegionInterceptlog (EAFRDpc)EduLowlog (GFCF)PrimGVALP(−1)
RO11−9.6143.826−0.21512.6900.4840.657
RO12−15.3459.5330.337−6.4081.1640.644
RO21−18.865−0.7230.337−6.4081.1640.826
RO22−20.1628.6770.619−5.4580.2120.660
RO3155.8562.2990.0671.9760.0090.272
RO32−26.2142.6470.57833.3404.7310.386
RO4177.1215.999−1.50011.051−2.6040.446
RO4245.8842.392−0.9256.6613.8070.143

Data sources_

IndicatorSource
Labour productivity Eurostat
EAFRD per capita Directorate-General for Regional and Urban Policy, EU Payments History – Regionalized and Modeled dataset
EMFF per capita Directorate-General for Regional and Urban Policy, EU Payments History – Regionalized and Modeled dataset
ERDF per capita Directorate-General for Regional and Urban Policy, EU Payments History – Regionalized and Modeled dataset
GFCF Eurostat
Gross Domestic Expenditure on R&D (GERD) Eurostat
European Quality of Government Index (EQI) European Quality of Government Index (EQI)
Proportion of Population with Low Education (EduLow) Eurostat
Share of Primary Sector in Gross Value Added (PrimGVA) Eurostat
Initial GDP per capita (2007) Eurostat
Population size Eurostat
Road accessibility DG Regio Regional Competitiveness Index – 2022 edition
Air accessibility DG Regio Regional Competitiveness Index – 2022 edition
Regions analysed: 8 NUTS2 regions in Romania
Period covered: 2007–2020
Total observations: 112 observations (8 regions × 14 years)

Testing the hypothesis on random effects in modelling labour productivity_

FE test
Statistic p-valueAlternative
2.95080.0078Significant effects
Hausman endogeneity test
Statistic p-valueAlternative
24.71770.0001One model is inconsistent

LASSO’s results regarding the most important determinants_

VariableLASSOPost-estimation OLS
log (EAFRDEMFFpc)10.034810.3199**
log (ERDFpc)2.98313.0211**
log (GFCF)29.289629.4165**
log (GERD)4.91124.9793**
EQI−15.7593−16.1696**
EduLow−0.5370−0.5364**
PrimGVA−0.8517−0.8623**
CONS0.43880061.846910**

Empirical results of the LASSO method for the labour productivity indicator_

LambdaL1-NormEBIC R-square
5241.224050.00000705.665560.0000
4775.608153.48932696.134880.1274
2268.8007721.77004616.516060.6119
1883.5982623.47559607.445920.6599
1563.7963724.66088601.043080.6941
742.9299727.86920582.666850.7549
561.9992829.55684582.160150.7667
425.13188433.10793580.577580.7803
DOI: https://doi.org/10.2478/mmcks-2025-0007 | Journal eISSN: 2069-8887 | Journal ISSN: 1842-0206
Language: English
Page range: 11 - 22
Submitted on: Nov 20, 2024
|
Accepted on: Mar 12, 2025
|
Published on: Jun 26, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Adriana AnaMaria Davidescu, Monica Mihaela Maer Matei, Marina-Diana Agafiței, Maria Bianca Bolboașă, published by Society for Business Excellence
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.