Have a personal or library account? Click to login
Will they repay their debt? Identification of borrowers likely to be charged off Cover

Will they repay their debt? Identification of borrowers likely to be charged off

Open Access
|Oct 2020

References

  1. Abdemoula, A. K. (2015). Bank Credit Risk Analysis with K-Nearest-Neighbor Classifier: Case of Tunisian Banks. Accounting and Management Information Systems, 14(1), 79-106.
  2. Akcura, K., & Chhibber, A. (2018). Design and Comparison of Data Mining Techniques for Predicting Probability of Default on a Loan. Retrieved from https://www.researchgate.net/profile/Korhan_Akcura2/publication/335173357_Design_and_Comparison_of_Data_Mining_Techniques_for_Predicting_Probability_of_Default_on_a_Loan/links/5d54a79d92851c93b630b8be/Design-and-Comparison-of-Data-Mining-Techniques-for-Pr
  3. Bayraci, S., & Susuz, O. (2019). A Deep Neural Network (DNN) based Classification Model in Application to Loan Default Prediction. Theoretical and Applied Economics, XXV(4(621)), 75-84.
  4. Belas, J., Smrcka, L., Gavurova, B., Dvorsky, J. (2018). The Impact of Social and Economic Factors in the Credit Risk Management of SME. Technological and Economic Development of Economy, Volume 24 Issue 3: 1215–1230.
  5. Çığşar, B., & Ünal, D. (2019). Comparison of Data Mining Classification Algorithms Determining the Default Risk. Scientific Programming, 2019, 1-8.10.1155/2019/8706505
  6. Coser, A., Maer-Matei, M., & Albu, C. (2019). Predictive Models for Loan Default Risk Assessment. Economic Computation and Economic Cybernetics Studies and Research, 53, 149-165. doi:10.24818/18423264/53.2.19.0910.24818/18423264/53.2.19.09
  7. Dima, M.A., Vasilache, S. (2009). ANN Model for Corporate Credit Risk Assessment, 2009 International Association of Computer Science and Information Technology Spring Conference (IACSIT-SC 2009), International Conference on Information and Financial Engineering (ICIFE2009), Singapore, 17-19 April, ISSN 976-07695-3653-8, pp. 94-98, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5190000
  8. Gurný, P., & Gurný, M. (2013). Comparison of Credit Scoring Models on Probability of Default Estimation for Us Banks. Prague Economic Papers, 22(2), 163-181. doi:10.18267/j.pep.44610.18267/j.pep.446
  9. Härdle, W. K., Moro, R. A., & Schäfer, D. (2007). Estimating probabilities of default with support vector machines. Discussion Paper Series 2: Banking and Financial Studies, Deutsche Bundesbank.
  10. Hoang, N. D. (2019). Automatic detection of asphalt pavement raveling using image texture based feature extraction and stochastic gradient descent logistic regression. Automation in Construction, 105, 102843. doi:https://doi.org/10.1016/j.autcon.2019.10284310.1016/j.autcon.2019.102843
  11. Kaya, M. E., Gurgen, F., & Okay, N. (2008). An Analysis of Support Vector Machines for Credit Risk Modeling. Proceedings of the 2008 conference on Applications of Data Mining in E-Business and Finance (pp. 25-33). IOS Press.
  12. Kostin, K. (2018). Foresight of the global digital trends. Strategic Management, 23(2), 11–19. https://doi.org/10.5937/StraMan1801011K.10.5937/StraMan1801011K
  13. Lending Club. (n.d.). database. Retrieved from https://www.kaggle.com/wordsforthewise/lending-club
  14. Ma, X., Sha, J., Wang, D., Yu, Y., Yang, Q., & Niu, X. (2018). Study on a prediction of P2P network loan default based on the machine learning LightGBM and XGboost algorithms according to different high dimensional data cleaning. Electronic Commerce Research and Applications, 31, 24-39. doi:https://doi.org/10.1016/j.elerap.2018.08.00210.1016/j.elerap.2018.08.002
  15. Manogaran, G., & Lopez, D. (2018). Health data analytics using scalable logistic regression with stochastic gradient descent. International Journal of Advanced Intelligence Paradigms, 10(1/2), 118–132. doi:https://doi.org/10.1504/IJAIP.2018.08949410.1504/IJAIP.2018.089494
  16. Nabende, P., & Senfuma, S. (2019). A study of machine learning models for predicting loan status from Ugandan loan applications. Athens.
  17. Nh, N., & Mai, N. (2018). Naïve Bayesian Classifier and Classification Trees for the Predictive Accuracy of Probability of Default Credit Card Clients. American Journal of Data Mining and Knowledge Discovery, 3(1), 1-12. Retrieved from http://article.sciencepublishinggroup.com/pdf/10.11648.j.ajdmkd.20180301.11.pdf
  18. Obare, D., & Muraya, M. (2018). Comparison of Accuracy of Support Vector Machine Model and Logistic Regression Model in Predicting Individual Loan Defaults. American Journal of Applied Mathematics and Statistics, 6(6), 266-271. doi:10.12691/ajams-6-6-8
  19. Ploeg, S. v., Verschoor, W. F., & Menken, J. (2010). Bank Default Prediction Models. A Comparison and an Application to Credit Rating Transitions. Rotterdam, The Netherlands: Erasmus University. Retrieved from https://pdfs.semanticscholar.org/04ef/35711bda7b4595e9f98618508b8a7e4a9c57.pdf
  20. Raei, R., Kousha, M. S., Fallahpour, S., & Fadacinejad, M. (2016). A hybrid model for estimating the probability of default of corporate customers. Iranian Journal of Managment Studies, 9(3), 651-673.
  21. Ramakrishnan, S., Mirzaei, M., & Bekri, M. (2015). Corporate Default Prediction with AdaBoost and Bagging Classifiers. Jurnal Teknologi, 73(2), 45-50. Retrieved from https://jurnalteknologi.utm.my/index.php/jurnalteknologi/article/view/4191/295 410.11113/jt.v73.4191
  22. Sariev, E., & Germano, G. (2020). Bayesian Regularized Artificial Neural Networks for the Estimation of the Probability of Default. Quantitative Finance, 20(0), 311-328.10.1080/14697688.2019.1633014
  23. Turiel, J., & Aste, T. (2020). Peer-to-peer loan acceptance and default prediction with artificial intelligence. Royal Society Open Science, 7(6). doi:10.1098/rsos.19164910.1098/rsos.191649
  24. Turlík, T. (2018). Neural networks and tree-based credit scoring models. Prague: Charles University, Faculty of Social Sciences, Institute of Economic Studies.
  25. Wang, B., Wang, Y., Qin, K., & Xia, Q. (2018). Detecting transportation modes based on LightGBM classifier from GPS trajectory data. 2018 26th International Conference on Geoinformatics (pp. 1-7). IEEE. doi:https://doi.org/10.1109/GEOINFORMATICS.2018.855714910.1109/GEOINFORMATICS.2018.8557149
  26. Wang, W., Cao, J., Lu, H., & Wang, J. (2013). A Default Discrimination Method for Manufacturing Companies by Improved PSO-based LS-SVM. International Journal of Hybrid Information Technology, 6, 1-12.
DOI: https://doi.org/10.2478/mmcks-2020-0023 | Journal eISSN: 2069-8887 | Journal ISSN: 1842-0206
Language: English
Page range: 393 - 409
Published on: Oct 8, 2020
Published by: Society for Business Excellence
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Raluca Dana Caplescu, Ana-Maria Panaite, Daniel Traian Pele, Vasile Alecsandru Strat, published by Society for Business Excellence
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.