Have a personal or library account? Click to login
Demand Forecasting of Retail Sales Using Data Analytics and Statistical Programming Cover

Demand Forecasting of Retail Sales Using Data Analytics and Statistical Programming

Open Access
|Jun 2020

References

  1. Aburto, L., & Weber, R. (2007). Improved supply chain management based on hybrid demand forecasts. Applied Soft Computing, 7(1), 136-144. https://doi.org/10.1016/j.asoc.2005.06.00110.1016/j.asoc.2005.06.001
  2. Aksoy, A., Ozturk, N., & Sucky, E. (2012). A decision support system for demand forecasting in the clothing industry. International Journal of Clothing Science and Technology, 24(4), 221-236. https://doi.org/10.1108/0955622121123282910.1108/09556221211232829
  3. Alon, I., Qi, M., & Sadowski, R. J. (2001). Forecasting aggregate retail sales: a comparison of artificial neural networks and traditional methods. Journal of retailing and consumer services, 8(3), 147-156. https://doi.org/10.1016/S0969-6989(00)00011-410.1016/S0969-6989(00)00011-4
  4. Aslanargun, A., Mammadov, M., Yazici, B., & Yolacan, S. (2007). Comparison of ARIMA, neural networks and hybrid models in time series: tourist arrival forecasting. Journal of Statistical Computation and Simulation, 77(1), 29-53. https://doi.org/10.1080/1062936060056487410.1080/10629360600564874
  5. Au, K. F., Choi, T. M., & Yu, Y. (2008). Fashion retail forecasting by evolutionary neural networks. International Journal of Production Economics, 114(2), 615-630. https://doi.org/10.1016/j.ijpe.2007.06.01310.1016/j.ijpe.2007.06.013
  6. Barreto, L., Amaral, A., & Pereira, T. (2017). Industry 4.0 implications in logistics: an overview. Procedia Manufacturing, 13, 1245-1252. https://doi.org/10.1016/j.promfg.2017.09.04510.1016/j.promfg.2017.09.045
  7. Boone, T., Ganeshan, R., Jain, A., & Sanders, N. R. (2019). Forecasting sales in the supply chain: Consumer analytics in the big data era. International Journal of Forecasting, 35(1), 170-180. https://doi.org/10.1016/j.ijforecast.2018.09.00310.1016/j.ijforecast.2018.09.003
  8. Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.
  9. Chambers J., Mullick K. & Smith D., (1971), How to Choose the Right Forecasting Technique. [online]. Available at: https://hbr.org/1971/07/how-to-choose-the-right-forecasting-technique [accessed at 27.11.2019].
  10. Diebold, F. X., & Mariano, R. S. (2002). Comparing predictive accuracy. Journal of Business & economic statistics, 20(1), 134-144. https://doi.org/10.1198/07350010275341044410.1198/073500102753410444
  11. Efthymiou, O. Κ., & Ponis, S. T. (2019). Current Status of Industry 4.0 in Material Handling Automation and In-house Logistics. International Journal of Industrial and Manufacturing Engineering, 13(10), 1370-1374. https://doi.org/10.5281/zenodo.3566333
  12. Fildes, R., Ma, S., & Kolassa, S. (2019). Retail forecasting: Research and practice. International Journal of Forecasting (in press). https://doi.org/10.1016/j.ijforecast.2019.06.00410.1016/j.ijforecast.2019.06.004
  13. Gardner Jr, E. S. (1985). Exponential smoothing: The state of the art. Journal of Forecasting, 4(1), 1-28. https://doi.org/10.1002/for.398004010310.1002/for.3980040103
  14. Geurts, M. D., & Kelly, J. P. (1986). Forecasting retail sales using alternative models. International Journal of Forecasting, 2(3), 261-272. https://doi.org/10.1016/0169-2070(86)90046-410.1016/0169-2070(86)90046-4
  15. Kohzadi, N., Boyd, M. S., Kermanshahi, B., & Kaastra, I. (1996). A comparison of artificial neural network and time series models for forecasting commodity prices. Neurocomputing, 10(2), 169-181. https://doi.org/10.1016/0925-2312(95)00020-810.1016/0925-2312(95)00020-8
  16. Kuo, C., & Reitsch, A. (1995). Neural networks vs. conventional methods of forecasting. The Journal of Business Forecasting, 14(4), 17.
  17. Vassakis, K., Petrakis, E., & Kopanakis, I. (2018). Big data analytics: Applications, prospects and challenges. In: Skourletopoulos G., Mastorakis G., Mavromoustakis C., Dobre C., Pallis E. (eds) Mobile Big Data. Lecture Notes on Data Engineering and Communications Technologies, vol 10. (pp. 3-20). Springer. https://doi.org/10.1007/978-3-319-67925-9_110.1007/978-3-319-67925-9_1
  18. Sartorius, L. C., & Mohn, N. C. (1976). Sales forecasting models: a diagnostic approach (No. 69). Georgia State University Press.
  19. Seeger, M. W., Salinas, D., & Flunkert, V. (2016). Bayesian intermittent demand forecasting for large inventories. In: Advances in Neural Information Processing Systems (pp. 4646-4654).
  20. Silver Ed. A., Pyke D. F. & Peterson R., (1998). Inventory Management and Production Planning and Scheduling, 3, pp. 86-98. Wiley.
  21. Takahashi, K., & Nakamura, N. (2004). Push, pull, or hybrid control in supply chain management. International Journal of computer integrated manufacturing, 17(2), 126-140. https://doi.org/10.1080/0951192031000159308310.1080/09511920310001593083
  22. Wong, W. K., & Guo, Z. X. (2010). A hybrid intelligent model for medium-term sales forecasting in fashion retail supply chains using extreme learning machine and harmony search algorithm. International Journal of Production Economics, 128(2), 614-624. https://doi.org/10.1016/j.ijpe.2010.07.00810.1016/j.ijpe.2010.07.008
  23. Zhang, G. P., & Qi, M. (2005). Neural network forecasting for seasonal and trend time series. European Journal of Operational Research, 160(2), 501-514. https://doi.org/10.1016/j.ejor.2003.08.03710.1016/j.ejor.2003.08.037
DOI: https://doi.org/10.2478/mmcks-2020-0012 | Journal eISSN: 2069-8887 | Journal ISSN: 1842-0206
Language: English
Page range: 186 - 202
Published on: Jun 30, 2020
Published by: Society for Business Excellence
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Panagiota Lalou, Stavros T. Ponis, Orestis K. Efthymiou, published by Society for Business Excellence
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.