Have a personal or library account? Click to login
Modelling of Stress Into Humidified Porous Layer Under Influence of Microwave Irradiation Part I the Problem Formulation Cover

Modelling of Stress Into Humidified Porous Layer Under Influence of Microwave Irradiation Part I the Problem Formulation

Open Access
|Sep 2025

References

  1. Самарский А.А .(1989). Теория разностных схем. Москва: “Наука”, 616c.
  2. Марчук Г.И. (1989). Методы вычислительной математики. Москва: “Наука”, 608c.
  3. Ши Д. (1988). Численные методы в задачах теплообмена. Москва: “Мир”, 544c.
  4. Howes A.H., Whitaker S. (1980) The spatial averaging theorem revisited. Chemical Engineering Science, 23(12), 1613-1623. DOI: 10.1016/0009-2509(85)80078-6.
  5. Lindell I.V. (1995). Methods for Electromagnetic Field Analysis.Piscataway,NJ: IEEE Press, 320p.
  6. Desai R.A., Lowery A.J., Christopouls C., Naylor C.P., Blanshard J.M.V., Gregson K. (1992) Computer modelling of microwave cooking using the transmission-line model. IEEE Proc. A, 139, 30-38. DOI: 10.1049/ip-a-3.1992.0005.
  7. Dibben D.C., Metaxas A.C. (1994) Finite element time domain analisys of multimode applicators using edge elements. J. Microwave Power Electomagnetic Energy, 29, 242-251. DOI: 10.1080/08327823.1994.11688252.
  8. Iskander M. (1993) Modeling the microwave process - challenges and new directions. Ceramic Trans., 36,167-199.
  9. Jia X., Jolly P. (1992) Simulation of microwave field and power distribution in a cavity by a three-dimensional finite element method. J. Microwave Power Electomagnetic Energy, 27, 11-22. DOI:10.1080/08327823.1992.11688166.
  10. Lorenson C. (1990) The why’s and how’s of mathematical modelling of microwave heating. Microwave World, 11(1), 14-22.DOI: doi: 10.20944/preprints202505.0265.v1.
  11. Lorenson C., Gallerneault C. (1991) Numerical method for the modelling of microwave fields. Ceramic Trans., 21, 193-200.
  12. Davis J. (1993) Finite element analysis of waveguides and cavities – a review. IEEE Trans. Magnetics., 29, 1578-1583. DOI: 10.1109/20.250706.
  13. Swinehart J. (1962) The Beer-Lambert law. J. Chem. Educ.,39 (7),333.
  14. Chen D.S., Sing R.K., Haghighi K., Nelson P. (1993) Finite element analysis of temperature distribution in microwave cylindrical potato tissues. J. Food Engineering., 18, 351-368. DOI: 10.1016/0260-8774(93)90052-L.
  15. Lin Y.E., Anantheswaran R.C., Puri V.M. (1995) Finite elment analysis of microwave heating of solid foods. J. Food Engineering, 25, .85-112. DOI: 10.1016/0260-8774(94)00008-W.
  16. Jansen W., Wekken B. (1991) Modeling of dielectrically assisted drying. J. Microwave Power Electromagnetic Energy, 26(4), 227-236. DOI: 10.1080/08327823.1991.11688161.
  17. Thomas H.R., King S.D. (1992) Couplet heat and mass transfer in unsaturated soil. A potentially –based solution. Int. J. Numerical Analytical Methods Geomechanics., 16, 757-773. DOI: 10.1002/nag.1610161005.
  18. Ozilgen M., Heil J.R. (1994) Mathematical modeling of transient heat and mass transport in a backing biscuit. J. Food Proc. Pres., (18), 133-148. DOI: 10.1111/j.1745-4549.1994.tb00248.x.
  19. Wang N., Brennan J.G. (1995) A mathematical model of simultaneous heat and moisture transfer during drying of potato. J. Food Engineering, 24, .47-60. DOI: 10.1016/0260-8774(94)P1607-Y.
  20. Chen P., Pei D.C.T. (1989) A mathematical model for drying processes. Int. J. Heat and Mass Transfer, 32(2), 297-310. DOI: 10.1016/0017-9310(89)90177-4.
  21. King C.J. (1971) Freeze drying of foods. Butterworth, London: CRC Press,86p.
  22. Chen P., Pei D.C.T. (1989) A mathematical model for drying processes. Int. J. Heat and Mass Transfer, 32(2), 297-310. DOI: 10.1016/0017-9310(89)90177-4.
  23. Berger D., Pei D.C.T. (1973) Drying of hygroscopic capillary porous solids – a theoretical approach. Int. J. Heat and Mass Transfer, 16, 293-302. DOI: 10.1016/0017-9310(73)90058-6.
  24. Jansen W., Wekken B. (1991) Modelling of dielectric assisted drying. J. Microwave Power Electromagnetic Energy, 26, 227-236. DOI: 10.1080/08327823.1991.11688161.
  25. Lal R., Shukla M.K. (2004) Principles of soil physics. Basel, NY: MarcelDekker Inc., 717p.
  26. Philip J.R., Vries D.A. (1957) Moisture movement in porous materials under temperature gradients. Thans. Am. Geophys. Union, 38, 222-232. DOI: 10.1029/TR038i002p00222.
  27. Raudkivi A.J., Nguyen Van U. (1976) Soil moisture movement by temperature gradient. J. Geotechnical Engineering Division, 102, .1225-1244. DOI: 1 0.1061/AJGEB6.0000353.
  28. Majorata C.E., Gawin G., Pesavento F., Schrefler В.А. (2002) The sixth international conference on computational structures technology /The third international conference on engineering computational technology/, 4-6 September 2020, Civil-Comp Press and imprint of Civil-Comp Ltd.: Stirling, Scotlant. – Czech Republic, Prague., 30p.
  29. Lepers B., Putranto A., Umminger M., Link G., Jelonnek J. (2014) A drying and thermoelastic model for fast microwave heating of concrete. Frontiers in Heat and Mass Transfer (FHMT), 5(13), 1-11. DOI:10.5098/hmt.5.13.
  30. Ong K.C.G, Akbarnezhad A. (2006) Thermal stresses in the microwave heating of concrete /Proceedings of the 31st Conference on our world in concrete & structures/, 16-17 August 2006,Thailand, Singapore, 15p.
  31. Like Q., Young L., Jun D., Pengfei T. (2016) Thermal stress distribution and evolution of concrete particles under microwave irradiation. Journal of Engineering Sciences and Technology Review, 9(3), 148-154. DOI: 10.25103/jestr.093.23.
Language: English
Page range: 13 - 20
Published on: Sep 1, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Volodymyr Yuzevych, Taras Holubets, published by Technical University of Civil Engineering of Bucharest
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.