Have a personal or library account? Click to login

Predicting the Plastic Rotational Capacity of Reinforced Concrete Elements Using Machine Learning

Open Access
|Sep 2025

References

  1. Hurwitz, J., Kirsch, D. (2018). Machine Learning for dummies. Hoboken: Wiley.
  2. Kameshwar, S., Padgett, J. E. (2017). Effect of vehicle bridge interaction on seismic response and fragility of bridges. Earthquake Engineering Structural Dynamics, 47(3), 697–713. DOI:10.1002/eqe.2986.
  3. Koutsourelakis, P. S. (2010). Assessing structural vulnerability against earthquakes using multi-dimensional fragility surfaces: A Bayesian framework. Probabilistic Engineering Mechanics, 25, 49–60. DOI: 10.1016/j.probengmech.2009.05.005.
  4. Yazdi, A. J., Haukaas, T., Yang, T., Gardoni, P. (2016). Multivariate fragility models for earthquake engineering. Earthquake Spectra, 32, 441–461. DOI : 10.1193/061314eqs085m.
  5. German, S., Brilakis, I., Desroches, R. (2012). Rapid entropy-based detection and properties measurement of concrete spalling with machine vision for post-earthquake safety assessments. Advanced Engineering Informatics, 26, 846–858. DOI : 10.1016/j.aei.2012.06.005.
  6. Luo, H., Paal, S., G. (2019). A Locally Weighted Machine Learning Model for Generalized Prediction of Drift Capacity in Seismic Vulnerability Assessments. Computer-Aided Civil and Infrastructure Engineering, 34 (11), 935–50. DOI : 10.1111/mice.12456.
  7. Aladsani, M., Burton, H., Abdullah, S., Wallace, J. (2022). Explainable Machine Learning Model for Predicting Drift Capacity of Reinforced Concrete Walls. ACI Structural Journal, 119, 191-204. DOI: 10.14359/51734484.
  8. Abdullah, S. A., Wallace, J. W. (2019). Drift Capacity of Reinforced Concrete Structural Walls with Special Boundary Elements. ACI Structural Journal, V. 116, No. 1, 183-194. DOI: 10.14359/51710864
  9. Berry, ., Parrish, ., & Eberhard, . (2004). PEER structural performance database user’s manual. Retrieved July 25, 2024, from http://nisee.berkeley.edu
  10. American Concrete Institute. (2019). Building Code Requirements for Structural Concrete. ACI 318-19. Michigan.
  11. Pokhrel, M., Bandelt, M. J. (2019). Plastic hinge behavior and rotation capacity in reinforced ductile concrete flexural members. Engineering Structures, 200, 109699–109699. DOI: 10.1016/j.engstruct.2019.109699.
  12. Mpampatsikos, V., Nascimbene, R., Petrini, L. (2008). A Critical Review of the R.C. Frame Existing Building Assessment Procedure According to Eurocode 8 and Italian Seismic Code. Journal of Earthquake Engineering. 12, 52-82. DOI:10.1080/13632460801925020.
  13. European Committee for Standardization. (2005). Eurocode 8, Design of Structures for Earthquake Resistance, Part 3: Assessment and Retrofitting of Buildings. EN-1998-3. Brussels.
  14. Moehle, J., Elwood, K. (2003). Collapse performance prediction for Reinforced Concrete frame structures. Proceedings of the Pacific Conference on Earthquake Engineering.
  15. Paulay, T., Priestley, M.,J.,N. (1992). Seismic Design of Reinforced Concrete and Masonry Buildings. New York: Wiley.
  16. Scikit-Learn. (2024). LinearRegression. Retrieved July 15, 2024, from https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
  17. Jakkula, V. (2006). Tutorial on Support Vector Machine (SVM). School of EECS, Washington State University. 37 (2.5), 3.
  18. Boswell, D., (2002). Introduction to Support Vector Machines. Department of Computer Science and Engineering University of California, San Diego. 11.
  19. Drumond, R. (2019). Jupyter Notebook Viewer. Retrieved July 12, 2024, from https://nbviewer.org/github/RomuloDrumond/LSSVM/blob/master/LSSVC.ipynb
  20. Jijo, B., Abdulazeez, A. M. (2021). Classification based on decision tree algorithm for machine learning. Journal of Applied Science and Technology Trends, 2, 20–28. DOI: 10.38094/jastt20165.
  21. Uddin, S., Khan, A., Hossain, M., Moni, M., A. (2019). Comparing different supervised machine learning algorithms for disease prediction. BMC Medical Informatics and Decision Making, 19(1), 281. DOI: 10.1186/s12911-019-1004-8.
  22. Readthedocs.io. (2022). XGBoost Documentation — xgboost 2.1.1 documentation. Retrieved July 16, 2024, from https://xgboost.readthedocs.io/en/stable/
  23. Perez, F., Granger, B. (2015). Jupyter Notebook [computer software]. Berkeley : Project Jupyter.
  24. Scikit-Learn.org. (2024). Scikit-learn: machine learning in Python — scikit-learn 1.5.1 documentation Retrieved July 16, 2024, from https://scikit-learn.org/stable/
  25. Nalcin, S. (2022). StandardScaler vs. MinMaxScaler vs. RobustScaler: Which one to use for your next ML project? Retrieved July 16, 2024, from https://medium.com/@onersarpnalcin/standardscaler-vs-minmaxscalervs-robustscaler-which-one-to-use-for-your-next-ml-project-ae5b44f571b9
Language: English
Page range: 21 - 33
Published on: Sep 1, 2025
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2025 Andrei-Odey Kadhim, Iolanda-Gabriela Craifaleanu, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.