Have a personal or library account? Click to login
Prediction of Scour Depth Around Bridge Piers Using Evolutionary Neural Network Cover

Prediction of Scour Depth Around Bridge Piers Using Evolutionary Neural Network

Open Access
|Aug 2018

References

  1. [1] Laursen, E.M. and Toch, A. (1956). Scour around bridge piers and abutments, Iowa Road Res. Board, 4:60.
  2. [2] Shen H.W. (1971). River mechanics. New York, USA: John Wiley and Sons, 1971, 2: 23.
  3. [3] Hancu S (1971). Sur le calcul des affouillements locaux dams la zone des piles des ponts. Proc. 14th IAHR Congress. Paris, France, 3, 299-313.
  4. [4] Breusers H. N. C., Nicollet G. and Shen H. W. (1977). Local scour around cylindrical piers. J. Hydr. Res., 15(3), 211-252. DOI: 10.1080/0022168770949964510.1080/00221687709499645
  5. [5] U. S. DoT (1992). Evaluating scour at bridges, hydraulic Engineering circular 18, Federal Highway administration, 2, 1-4.
  6. [6] Melville B. W. and Chiew Y. M. (1999). Time scale for local scour depth at bridge piers. J. Hydr. Eng., 125(1), 59-65. DOI: 10.1061/(ASCE)0733-9429(1999)125:1(59)10.1061/(ASCE)0733-9429(1999)125:1(59
  7. [7] Lee, T. L., Jeng, D. S., Zhang, G. H. and Hong, J. H. (2007). Neural network modeling for estimation of scour depth around bridge piers, Journal of Hyrodynamics, 19(3), 378-386. DOI: 10.1016/S1001-6058(07)60073-010.1016/S1001-6058(07)60073-0
  8. [8] Bateni, S.M., Borghei, S.M. and Jeng, D.S. (2007). Neural network and neuro-fuzzy assessments for scour depth around bridge piers, Engineering Applications of Artificial Intelligence, 20 (3), 401-414. DOI: 10.1016/j.engappai.2006.06.01210.1016/j.engappai.2006.06.012
  9. [9] Ismail A., Jeng D.-S., Zhang, L.L. and Zhang, J.-S. (2013). Predictions of bridge scour: Application of a feed-forward neural network with an adaptive activation function, Engineering Applications of Artificial Intelligence, 26, 1540–1549. DOI: 10.1016/j.engappai.2012.12.01110.1016/j.engappai.2012.12.011
  10. [10] Akib, S., Mohammadhassani, M. and Jahangirzadeh, A. (2014). Application of ANFIS and LR in prediction of scour depth in bridges, Computers & Fluids, 91, 77-86, DOI: 10.1016/j.compfluid.2013.12.00210.1016/j.compfluid.2013.12.002
  11. [11] Ebtehaj, I., Hossein Bonakdari, H., Moradi, F., Gharabaghi, B. And Khozani, Z. S. (2018). An integrated framework of Extreme Learning Machines for predicting scour at pile groups in clear water condition, Coastal Engineering, 135, 1-15. DOI: 10.1016/j.coastaleng.2017.12.012310.1016/j.coastaleng.2017.12.0123
  12. [12] Chou, J.-S. And Pham, A.-D. (2014). Hybrid computational model for predicting bridge scour depth near piers and abutments, Automation in Construction, 48, 88-96. DOI: 10.1016/j.autcon.2014.08.00610.1016/j.autcon.2014.08.006
  13. [13] Pang, A. L. J., Skote, M., Lim, S.Y., Gullman-Strand, J. and Morgan, N. (2016). A numerical approach for determining equilibrium scour depth around a mono-pile due to steady currents, Applied Ocean Research, 57, 114-124. DOI: 10.1016/j.apor.2016.02.010.10.1016/j.apor.2016.02.010
  14. [14] Matinez-Garcia F. J. and Moreno-Perez, J. A. (2008). Jumping frogs optimization: a new swarm method for discrete optimization, Technical Report DEIOC 3/2008, Department of Statistics, O.R. and Computing, University of La Laguna, Tenerife, Spain.
  15. [15] Kennedy, J. and Eberhart, R. C. (1997). A discrete binary version of the particle swarm algorithm, Proceedings of IEEE Conference on Systems, Man, and Cybernetics, Iscataway, New Jersey,USA, p. 4104-4109.10.1109/ICSMC.1997.637339
  16. [16] Consoli, S., Moreno-Perez, J. A., Darby-Dowman, K. and Mladenovic, N. (2010). Discrete particle swarm optimisation for the minimum labelling steiner tree problem, Natural Computing, 9(1), pp. 29–46.10.1007/s11047-009-9137-9
  17. [17] Seren, C. (2011). A hybrid jumping particle swarm optimisation method for high dimensional unconstrained discrete problems, IEEE Congress on Evolutionary Computation (CEC), p. 1649-1656, 2011.10.1109/CEC.2011.5949813
  18. [18] Durbin R. and Rumelhart, R. (1989). Product units: A computationally powerful and biologically plausible extension to backpropagation networks. Neural computation, 1, 133–142. DOI: 10.1162/neco.1989.1.1.13310.1162/neco.1989.1.1.133
  19. [19] Melville, B. W., & Chiew, Y. M. (1999). Time scale for local scour at bridge piers. Journal of Hydraulic Engineering, 125(1), 59-65.10.1061/(ASCE)0733-9429(1999)125:1(59)
  20. [20] Buckingham, E. (1914). On physically similar systems; illustrations of the use of dimensional equations”. Physical Review. 4 (4): 345–376.10.1103/PhysRev.4.345
  21. [21] Jin, Y., Okabe, T. and Sendhoff, B. (2004). Neural network regularization and ensembling using multiobjective evolutionary algorithms, Congress on Evolutionary Computation (CEC’04), IEEE Press, 1–8.
  22. [22] Goh, A. T. C. (1995). Back-propagation neural networks for modeling complex systems. Artificial Intelligence in Engineering, (9):143–151.10.1016/0954-1810(94)00011-S
  23. [23] Rahman, M. S., Wang, J., Deng, W. and Carter, J. P. (2001). A neural network model of the uplift capacity of suction caissons. Computers and Geotechnics, 28:269–287.10.1016/S0266-352X(00)00033-1
  24. [24] Firat, M. and Gungor, M. (2009). Generalized regression neural networks and feed forward neural networks for prediction of scour depth around bridge piers. Adv. Eng. Software, 40, 731–737. DOI: 10.1016/j.advengsoft.2008.12.00110.1016/j.advengsoft.2008.12.001
  25. [25] Abidin, K. (2010). Artificial neural network study of observed pattern of scour depth around bridge piers. Comput. Geotech. 37, 413–418. DOI: 10.1016/j.compgeo.2009.10.00310.1016/j.compgeo.2009.10.003
Language: English
Page range: 26 - 36
Published on: Aug 6, 2018
Published by: Technical University of Civil Engineering of Bucharest
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Abdussamad Ismail, published by Technical University of Civil Engineering of Bucharest
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.