Have a personal or library account? Click to login
p(x)-Kirchhoff bi-nonlocal elliptic problem driven by both p(x)-Laplacian and p(x)-Biharmonic operators Cover

p(x)-Kirchhoff bi-nonlocal elliptic problem driven by both p(x)-Laplacian and p(x)-Biharmonic operators

Open Access
|Sep 2023

References

  1. M. Allaoui, O. Darhouche, Existence results for a class of nonlocal problems involving the (p1(x), p2(x))-Laplace operator. Complex Variables and Elliptic Equations, 63(1), (2017), 76-89.
  2. A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in critical point theory and applications. Journal of functional Analysis, 14(4), (1973), 349-381.
  3. A. Ayoujil and A. R. EI Amrouss, On the spectrum of a fourth order elliptic equation with variable exponent. Nonlinear Anal. Theory Methods Appl., 71, (2009), 4916-4926.
  4. Y.A. Cengel, M. A. Boles, M. Kanoˇglu, Thermodynamics: an engineering approach (Vol. 5, p. 445). New York: McGraw-hill. 2011.
  5. F.J.S. Correa, A.C.D.R. COSTA, A variational approach for a bi-non-local elliptic problem involving the p(x)-Laplacian and non-linearity with non-standard growth. Glasgow Mathematical Journal, 56(2), (2014), 317-333.
  6. D. Edmunds and J. Rákosník, Sobolev embeddings with variable exponent. Stud. Math., 143 (2000), 267-293.
  7. A. El Khalil, M.D. Morchid Alaoui, A. Touzani, On the Spectrum of problems involving both p(x)-Laplacian and p(x)-Biharmonic. Advances in Science, Technology and Engineering Systems Journal, 2(5), (2017), 134-140.
  8. X.L. Fan, X. Fan, A Knobloch-type result for p(t)-Laplacian systems. Journal of Mathematical Analysis and Applications, 282(2), (2003), 453-464.
  9. X.L. Fan, X. Fan, Existence and multiplicity of solutions for p(x)-Laplacian equations in ℝN. Nonlinear Anal. Theory Methods Appl., 59, (2004), 173-188.
  10. X.L. Fan, Q.H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problems. Nonlinear Anal. Theory Methods Appl., 52, (2003), 1843-1852 .
  11. X.L. Fan, D. Zhao, On the space Lp(x) (Ω) and Wm,p(x) (Ω). J. Math. Anal. Appl., 263, (2001), 424-446.
  12. F. Jaafri, A. Ayoujil, M. Berrajaa, On a bi-nonlocal fourth order elliptic problem. Proyecciones (Antofagasta), 40(1), (2021), 239-253.
  13. R. Kajikia, A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations. J. Funct. Anal., 225, (2005), 352-370.
  14. R.C. Kenneth, Digital image processing. Prentice Hall., 1996.
  15. G. Kirchhoff. Mechanik. Leipzig: Teubner; 1883.
  16. O. Kovacik and J. Rakosuik, On spaces Lp(x) (Ω) and Wm,p(x) (Ω). Czechoslovak Math. J., 41, (1991), 592-618.
  17. J. Lee, J.M. Kim, Y.H. Kim, Existence and multiplicity of solutions for Kirchhoff-Schrödinger type equations involving p(x)-Laplacian on the entire space ℝN. Nonlinear Analysis: Real World Applications, 45, (2019), 620-649.
  18. T.A. Philpot, J.S. Thomas, Mechanics of materials: an integrated learning system. John Wiley & Sons. 2020.
  19. F.M. White, Fluid Mechanics 7th Edition in SI units. 2016.
  20. A. Zang, Y. Fu, Interpolation inequalities for derivatives in variable exponent Lebesgue-Sobolev spaces. Nonlinear Analysis: Theory, Methods & Applications, 69 (10), (2008), 3629-3636.
  21. V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR. Izv., 9, (1987), 33-66.
Language: English
Page range: 407 - 419
Submitted on: Feb 6, 2023
Accepted on: Sep 29, 2023
Published on: Sep 29, 2023
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2023 Mohsine Jennane, My Driss Morchid Alaoui, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.