Have a personal or library account? Click to login
On some generalization of order cancellation law for subsets of topological vector space Cover

On some generalization of order cancellation law for subsets of topological vector space

Open Access
|Sep 2023

References

  1. J. Grzybowski, H. Przybycień, Order Cancellation Law in a Semigroup of Closed Convex Sets, Taiwanese Journal of Mathematics vol. 26 issue 6 (2022) p. 1281-1302
  2. K. Kolczyńska - Przybycień, H. Przybycień, A note on cancellation law for p−convex sets, New Zealand Journal of Mathematics, 49 (2019),11-13.
  3. K. Kolczyńska - Przybycień, H. Przybycień, A note on cancellation law for subsets of topolgical groups, Transactions of A. Razmadze Mathematical Institute Vol. 176 (2022), issue 2, 225227.
  4. H. Przybycień, A note on closedness of algebraic sum of sets, Tblisi Mathematical Journal 9 (2)(2016) p. 71-74.
  5. H. Rådström, An Embedding Theorem for Spaces of Convex Sets, Proc. Amer. Math. Soc. 3 (1952), 165169.
  6. S. M. Robinson, An embedding theorem for unbounded convex sets, Madison Mathematics Research Center, The University of Wisconsin, Technical Summary Report no. 1321, (1973), 123.
  7. R. Urbański,A generalization of the Minkowski-Rdstrm-Hrmander theorem,, Bull. Acad. Polon. Sci. Sr. Sci. Math. Astronom. Phys.24 (1976), 709-715.
  8. R. Urbański, A note on the law of cancellation for p−convex sets Archiv der Mathematik 46(5) (1986), 445-446.
Language: English
Page range: 378 - 382
Submitted on: Jun 27, 2023
Accepted on: Sep 27, 2023
Published on: Sep 29, 2023
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2023 Hubert Przybycie, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.