Have a personal or library account? Click to login
An existence result for two-dimensional parabolic integro-differential equations involving CEV model Cover

An existence result for two-dimensional parabolic integro-differential equations involving CEV model

Open Access
|Sep 2023

References

  1. Bates, D. S., Pricing Options Under Jump-Diffusion Processes, The Wharton School, University Pennsylvania, (1988).
  2. Black, F. and Scholes, M., The Pricing of Options and Corporate Liabilities, 81(1973), 637-654.
  3. Briani, M., La Chioma, C. and Natalini, R., Convergence of numerical schemes for viscosity solutions to integro-differential degenerate parabolic problems arising in financial theory, Numerische Mathematik, 4(2004), 98, 607-646.
  4. Briani, M. and Natalini, R., Asymptotic high-order schemes for integro-differential problems arising in markets with jumps, COMM. MATH. SCI, 4(2006), 1, 81-96.
  5. Cox, D., Notes on Option Pricing I: Constant Elasticity of Variance Diffusions, Stanford University, Graduate School of Business (1975).
  6. Cox, D., The Constant Elasticity of Variance Option Pricing Model, Journal of Portfolio Management, 22 (1996), 15-17.
  7. Florescu, I., Liu, R. and Mariani, M. C., Solutions to a partial integro-differential parabolic system arising in the pricing of financial options in regime-switching jump diffusion models, Electronic Journal of Differential Equations, 231, (2012), 1-12.
  8. Florescu, I. and Mariani, M. C., Solutions to integro-differential parabolic problems arising in the pricing of financial options in a Levy market, Electronic Journal of Differential Equations, 62, (2010),1-10.
  9. Jarmouni, B. and Kbiri Alaoui, M. and Souissi, A., An existence result for parabolic integro-differential equations involving CEV model, Journal of Portfolio Management, 51 (21), (2013),682-689.
  10. Lions, J. L., Contrôle optimal de systèmes gouvernés par deséquations aux dérivée partielles, Dunod, Gauthier-Villars, Paris, (1968).
  11. Lynn, B., European rainbow option values under the two-asset Merton jump-diffusion model, Journal of Computational and Applied Mathematics, 364(2020), 112344, 1-15.
  12. Mariani, M. C. and SenGupta, I., Solutions to an integro-differential parabolic problem arising in the pricing of financial options in a Lévy market, Nonlinear Analysis: Real World Applications, 12 (6) (2011), 3103-3113.
  13. Merton, R. C., Option pricing when the underlying stocks returns are discontinuous, Journal of Financial Economics, 3(1-2), (1976), 125-144.
  14. Walter, W., Differential and Integral Inequalities, Springer, (1970).
Language: English
Page range: 365 - 377
Submitted on: Feb 15, 2023
Accepted on: Jun 19, 2023
Published on: Sep 29, 2023
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2023 Brahim Jarmouni, Hassane Hjiaj, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.