References
- J. Aramaki, Poincaré inequality and campanato estimates for weak solutions of parabolic equations, Electronic Journal of Differential Equations, 2016 (2016), 204, 1-8.
- B. Avelin, T. Kuusi, M. Parviainen, Variational parabolic capacity, Discrete Contin. Dyn. Syst. 35 (2015), 12, 5665-5688.
- M. El Aïdi, Positivity criteria for a generalized Schrödinger operator, Rend. Semin. Mat. Univ. Politec. Torino 70 (2012), 4, 435-448.
- M. Gromov, Curvature, diameter and Betti numbers, Comment. Math. Helvetici 56 (1981), 179-195.
- V. Kondratiev, M. Maz’ya, M. Shubin, Discreteness of spectrum and strict positivity criteria for magnetic Schrödinger operators. Commun in Partial Differential Equations, 29 (2004), (3& 4), 489-521.
- V. Kondratiev, M. Shubin, Discreteness of Spectrum Conditions for Schrödinger Operators on Manifolds of bounded geometry, Operator Theory: Advances and Applications, 110, 185-226 (dedicated to V.G. Maz’ya 60th anniversary), Birkhäuser Verlag, Basel, 1999.
- M.G. Maz’ya, Sobolev space with application to Elliptic Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, 342 2nd, augmented Edition, 2011.
- V. Maz’ya, M. Shubin M, Discreteness of spectrum and positivity criteria for Schrödinger operators, Annals of Mathematics. 162 (2005), 919-942.
- K.T. Mynbaev, M.O. Otelbaev, Weighted Functional Spaces and the Spectra of Differential Operators. Nauka, Moscow (Russian) (1998).
- S.M. Nicholsky, Encyclopaedia of Mathematical Sciences, Analysis III. 26. Springer Verlag, 1991.
- M. Pierre, Parabolic capacity and Sobolev spaces. SIAM J. Math. Anal. 14(3), 522-533 (1983).
- W.P. Ziemer, Interior and Boundary Continuity of Weak Solutions of Degenerate Parabolic Equations, Transactions of the American Mathematical Society, 271 (1982), 2, 733-748.
- W.P. Ziemer, Behavior at the boundary of solutions of quasi-linear parabolic equations, J. Differential Equations. 35 (1980), 291-305.