References
- E. Acerbi, G. Mingione, Regularity results for stationary electrorheological fluids, Archive for Rational Mechanics and Analysis, 164, 213-259, (2002).
- C.O. Alves, A. Moussaoui, Existence and regularity of solutions for a class of singular (p(x), q(x))-Laplacian systems, Complex Variables and Elliptic Equations, 63(2), 188-210, (2017).
- S. N. Antontsev, J. F. Rodrigues, On stationary thermorheological viscous flows, Annali dell’Universita di Ferrara, Sezione VII - Scienze Matematiche, 52, 19-36, (2006).
- S. N. Antontsev, S. I. Shmarev, Handbook of Differential Equations: Stationary Partial Differential Equations, Chapter 1, 3, (2006).
- L. Boccardo, G. De Figueiredo, Some remarks on a system of quasilinear elliptic equations, Nonlinear Differential Equations and Applications 9, 309-323, (2002).
- F. Bozorgnia, S.A. Mohammadi, T. Vejchodský, The first eigenvalue and eigenfunction of a nonlinear elliptic system, Applied Numerical Mathematics 145, 159-174, (2019).
- Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM Journal on Applied Mathematics, 66(4), 1383-1406, (2006).
- F. De Thélin, Première valeur propre d’un système elliptique non linéaire, Comptes Rendus de l’Académie des Sciences - Series I - Mathematics, 311(10), 603-606, (1990).
- L. Diening, P. Harjulehto, P. Hästö, M. Ružička, Lebesgue and Sobolev Spaces with Variable Exponents, Springer, Heidelberg, (2011).
- A. El Hachimi, F. De Thélin, Nonrésonance près de la première valeur propre d’un système elliptique quasilinéaire de type potentiel, Publicaciones Matemàtiques, 39(2), 393-404, (1995).
- A. El Khalil, S. El Manouni, M. Ouanan, Simplicity and stability of the first eigenvalue of a nonlinear elliptic system, International Journal of Mathematics and Mathematical Sciences, 10, Article ID 328340, 1555-1563, (2005).
- X. Fan, Q.-H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Analysis: Theory, Methods and Applications, 52(8), 1843-1852, (2003).
- X. Fan, D. Zhao, On the Spaces Lp(x) (Ω) and Wm,p(x) (Ω), Journal of Mathematical Analysis and Applications, 263(2), 424-446, (2001).
- L. Faria, O. Miyagaki, M. Tanaka, Existence of a positive solution for problems with (p,q)-Laplacian and convection term in ℝN, Boundary Value Problems, 158, (2016).
- P. Felmer, R. Manasevich, F. De Thélin, Existence and uniqueness of positive solutions for certain quasilinear elliptic systems, Communications in Partial Differential Equations, 1(11-12), 2013-2029, (1992).
- T.-S. Hsu, Multiple positive solutions for a quasilinear elliptic system involving concave-convex nonlinearities and sign-changing weight functions, International Journal of Mathematics and Mathematical Sciences, 2012, Article ID 109214, 1-21, (2012).
- D.A. Kandilakis, M. Magiropoulos, N. Zographopoulos, The first eigenvalue of p-Laplacian systems with nonlinear boundary conditions, Boundary Value Problems, 2005(3), Article number: 251350, 307-321, (2005).
- D. Motreanu, C. Vetro, F. Vetro, A parametric Dirichlet problem for systems of quasilinear elliptic equations with gradient dependence, Numerical Functional Analysis and Optimization, 37(12), 1551-1561, (2016).
- A. Moussaoui, J. Vélin, On the first eigenvalue for a (p(x), q(x))-Laplacian elliptic system, Electronic Journal of Qualitative Theory of Differential Equations, 66, 1-22, (2019).
- D. Nabab, J. Vélin, On a nonlinear elliptic system involving the (p(x) − q(x))-Laplacian operator with gradient dependence, Complex Variables and Elliptic Equations, 67(7), 1554-1578, (2022).
- M. Ružička, Electrorheological fluids: modeling and mathematical theory, Lecture Notes in Mathematics, Springer, Berlin, (2000).
- N.B. Zographopoulos, On the principal eigenvalue of degenerate quasilinear elliptic systems, Mathematische Nachrichten, 281(9), 1351-1365, (2008).