Have a personal or library account? Click to login
Solvability of Parametric Elliptic Systems with Variable Exponents Cover

Solvability of Parametric Elliptic Systems with Variable Exponents

Open Access
|Sep 2023

References

  1. E. Acerbi, G. Mingione, Regularity results for stationary electrorheological fluids, Archive for Rational Mechanics and Analysis, 164, 213-259, (2002).
  2. C.O. Alves, A. Moussaoui, Existence and regularity of solutions for a class of singular (p(x), q(x))-Laplacian systems, Complex Variables and Elliptic Equations, 63(2), 188-210, (2017).
  3. S. N. Antontsev, J. F. Rodrigues, On stationary thermorheological viscous flows, Annali dell’Universita di Ferrara, Sezione VII - Scienze Matematiche, 52, 19-36, (2006).
  4. S. N. Antontsev, S. I. Shmarev, Handbook of Differential Equations: Stationary Partial Differential Equations, Chapter 1, 3, (2006).
  5. L. Boccardo, G. De Figueiredo, Some remarks on a system of quasilinear elliptic equations, Nonlinear Differential Equations and Applications 9, 309-323, (2002).
  6. F. Bozorgnia, S.A. Mohammadi, T. Vejchodský, The first eigenvalue and eigenfunction of a nonlinear elliptic system, Applied Numerical Mathematics 145, 159-174, (2019).
  7. Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM Journal on Applied Mathematics, 66(4), 1383-1406, (2006).
  8. F. De Thélin, Première valeur propre d’un système elliptique non linéaire, Comptes Rendus de l’Académie des Sciences - Series I - Mathematics, 311(10), 603-606, (1990).
  9. L. Diening, P. Harjulehto, P. Hästö, M. Ružička, Lebesgue and Sobolev Spaces with Variable Exponents, Springer, Heidelberg, (2011).
  10. A. El Hachimi, F. De Thélin, Nonrésonance près de la première valeur propre d’un système elliptique quasilinéaire de type potentiel, Publicaciones Matemàtiques, 39(2), 393-404, (1995).
  11. A. El Khalil, S. El Manouni, M. Ouanan, Simplicity and stability of the first eigenvalue of a nonlinear elliptic system, International Journal of Mathematics and Mathematical Sciences, 10, Article ID 328340, 1555-1563, (2005).
  12. X. Fan, Q.-H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Analysis: Theory, Methods and Applications, 52(8), 1843-1852, (2003).
  13. X. Fan, D. Zhao, On the Spaces Lp(x) (Ω) and Wm,p(x) (Ω), Journal of Mathematical Analysis and Applications, 263(2), 424-446, (2001).
  14. L. Faria, O. Miyagaki, M. Tanaka, Existence of a positive solution for problems with (p,q)-Laplacian and convection term in ℝN, Boundary Value Problems, 158, (2016).
  15. P. Felmer, R. Manasevich, F. De Thélin, Existence and uniqueness of positive solutions for certain quasilinear elliptic systems, Communications in Partial Differential Equations, 1(11-12), 2013-2029, (1992).
  16. T.-S. Hsu, Multiple positive solutions for a quasilinear elliptic system involving concave-convex nonlinearities and sign-changing weight functions, International Journal of Mathematics and Mathematical Sciences, 2012, Article ID 109214, 1-21, (2012).
  17. D.A. Kandilakis, M. Magiropoulos, N. Zographopoulos, The first eigenvalue of p-Laplacian systems with nonlinear boundary conditions, Boundary Value Problems, 2005(3), Article number: 251350, 307-321, (2005).
  18. D. Motreanu, C. Vetro, F. Vetro, A parametric Dirichlet problem for systems of quasilinear elliptic equations with gradient dependence, Numerical Functional Analysis and Optimization, 37(12), 1551-1561, (2016).
  19. A. Moussaoui, J. Vélin, On the first eigenvalue for a (p(x), q(x))-Laplacian elliptic system, Electronic Journal of Qualitative Theory of Differential Equations, 66, 1-22, (2019).
  20. D. Nabab, J. Vélin, On a nonlinear elliptic system involving the (p(x) − q(x))-Laplacian operator with gradient dependence, Complex Variables and Elliptic Equations, 67(7), 1554-1578, (2022).
  21. M. Ružička, Electrorheological fluids: modeling and mathematical theory, Lecture Notes in Mathematics, Springer, Berlin, (2000).
  22. N.B. Zographopoulos, On the principal eigenvalue of degenerate quasilinear elliptic systems, Mathematische Nachrichten, 281(9), 1351-1365, (2008).
Language: English
Page range: 311 - 330
Submitted on: Feb 10, 2023
Accepted on: May 29, 2023
Published on: Sep 29, 2023
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2023 Anass Ouannasser, Abderrahmane El Hachimi, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.