Have a personal or library account? Click to login
On Darbo’s fixed point principle Cover

References

  1. H. Amann, Order structures and fixed points. In: SAFA 2 - Atti del 2 Seminario di Anal. Funzionale e Appl., Cosenza, 28. Settembre - 6. Ottobre 1977, 1-51. Universit di Calabria, (1979).
  2. J. Appell, M. Vath, A. Vignoli, Compactness and existence results for ordinary differential equations in Banach spaces. Z. Anal. Anwendungen 18 (1999), no. 3, 569–584.
  3. D. Ariza-Ruiz, J. Garcia-Falset, Abstract measures of noncompactness and fixed points for nonlinear mappings. Fixed Point Theory 21 (2020), no. 1, 47–65.
  4. J. M. Ayerbe Toledano, T. Dominguez Benavides, G. Lopez Acedo, Measures of Noncompactness in Metric Fixed Point Theory. Operator Theory: Advances and Applications, 99, Birkhuser Verlag, Basel, 1997.
  5. S. Banach, Sur les opérations dans les ensembles abstraits et leur application auxéquations intégrales. Fund. Math. 3 (1922), 133–181.
  6. J. Banas, K. Goebel, Measures of Noncompactness in Banach Spaces. Lecture Notes in Pure and Applied Mathematics, 60. Marcel Dekker, Inc., New York, 1980.
  7. M. Baronti, E. Casini, P.L. Papini, Diametrically contractive maps and fixed points. Fixed Point Theory Appl. 2006, Art. ID 79075, 8 pp.
  8. A. Chlebowicz, M. A. Taoudi, Measures of weak noncompactness and fixed points. Advances in nonlinear analysis via the concept of measure of noncompactness, 247–296, Springer, Singapore, 2017.
  9. S. J. Daher, On a fixed point principle of Sadovskii. Nonlinear Anal. 2 (1978), no. 5, 643–645.
  10. G. Darbo, Punti uniti in trasformazioni a codominio non compatto, Rend. Sem. Mat. Univ. Padova 24 (1955), 84–92.
  11. F. S. De Blasi, On a property of the unit sphere in a Banach space. Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.) 21(69) (1977), no. 3-4, 259–262.
  12. W. A. Kirk, B. Sims (Eds) Handbook of Metric Fixed Point Theory. Kluwer Academic Publishers, Dordrecht, 2001.
  13. M.A. Krasnosel’skii, Two Remarks on the Method of Successive Approximations. Uspekhi Matematicheskikh Nauk, 10, (1955), 123–127.
  14. W. Rudin, Principles of Mathematical Analysis. Third edition. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., New York-Auckland-Dusseldorf, 1976.
  15. B. N. Sadovskii, On a fixed point principle, Funkt. Anal., 4(2) (1967), 74–76.
  16. J. Schauder, Der Fixpunktsatz in Functionalraumen, Studia Math., 2, (1930), 171–180.
  17. M. Vath, Fixed point theorems and fixed point index for countably condensing maps. Topol. Methods Nonlinear Anal. 13 (1999), no. 2, 341–363.
  18. M. Vath, Topological Analysis. From the Basics to the Triple Degree for Nonlinear Fredholm Inclusions. De Gruyter Series in Nonlinear Analysis and Applications, 16. Walter de Gruyter & Co., Berlin, 2012.
  19. H. K. Xu, Diametrically contractive mappings. Bull. Austral. Math. Soc. 70 (2004), no. 3, 463–468.
  20. E. Zeidler, Nonlinear Functional Analysis and its Applications. I. Fixed-point theorems. Translated from the German by Peter R. Wadsack. Springer-Verlag, New York, 1986.
Language: English
Page range: 304 - 310
Submitted on: May 20, 2023
Accepted on: Sep 12, 2023
Published on: Sep 29, 2023
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2023 Mohamed Aziz Taoudi, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.