Have a personal or library account? Click to login
On the Cyclicity of Dilated Systems in Lattices: Multiplicative Sequences, Polynomials, Dirichlet-type Spaces and Algebras Cover

On the Cyclicity of Dilated Systems in Lattices: Multiplicative Sequences, Polynomials, Dirichlet-type Spaces and Algebras

Open Access
|Jun 2023

References

  1. N. I. Ahiezer, Lectures on the theory of approximation, OGIZ, Moscow-Leningrad, 1947 (Russian), 323 pp (MR0025598).
  2. A. Aleman, M. Hartz, J. McCarthy, and S. Richter, Free outer functions in complete Pick spaces, arXiv:2203.08179v1, 15 Mar 2022.
  3. N. Arcozzi, R. Rochberg, E. Sawyer, Two variations on the Drury-Arveson space, in “Hilbert spaces of analytic functions” CRM Proc. Lecture Notes, 51, 41–58 (AMS, Providence RI), 2010.
  4. L. Báez-Duarte, A strengthening of the Nyman–Beurling criterion for the Riemann hypothesis, Atti Acad. Naz. Lincei 14 (2003), 5–11.
  5. L. Bergqvist, A note on cyclic polynomials in polydiscs, Anal. Math. Phys. (2018), 8: 197–211.
  6. A. Beurling, On the completeness of {ψ (nt)} on L2(0, 1), a seminar talk 1945, The collected Works of Arne Beurling, Vol. 2: Harmonic Analysis, Contemp. Mathematicians, Birkhäuser, Boston, 1989, 378–380.
  7. A. Beurling, A critical topology in harmonic analysis on semigroups, Acta Math. 112 (1964), 215–228.
  8. H. Bohr,Über die Bedeutung der Potenzreihen unendlich vieler Variabeln in der Theorie der Dirichletschen Reien ∑ αnns \sum {{{{\alpha _n}} \over {{n^s}}}} , Nachr. Ges. Wiss. Göttingen. Math.-Phys. Kl., 1913, A9, 441–488.
  9. A. Borichev, O. El-Fallah, A. Hanine, Cyclicity in weighted Bergman type spaces, J. Math. Pures Appl., (9)102:6(2014), 1041–1061.
  10. A. Borichev, H. Hedenmalm, A. Volberg, Large Bergman spaces: invertibility, cyclicity, and subspaces of arbitrary index, J. Funct. Anal. 207:1 (2004), 111–160.
  11. H. Dan and K. Guo, The periodic dilation completeness problem: cyclic vectors in the Hardy space over the infinite-dimensional polydisc, J. London Math. Soc., (2) 00 (2020), 1–34.
  12. H. Dan, K. Guo, The Beurling–Wintner problem for step functions, arXiv:205.09779v3, 2021, 53pp.
  13. H. Dan, K. Guo, J. Ni, Invariant subspaces of the Bergman spaces in infinitely many variables, arXiv:2103.04145v2, 2021.
  14. O. El-Fallah, K. Kellay, J. Mashreghi, Th. Ransford, A primer on the Dirichlet spaces, Cambridge Univ. Press, Cambridge, 2014.
  15. O. El-Fallah, K. Kellay, Th. Ransford, Cyclicity in the Dirichlet spaces, Ark. Mat. 44:1, 2006, 61–86.
  16. O. El-Fallah, N. Nikolski, and M. Zarrabi, Resolvent estimates in Beurling–Sobolev algebras, Algebra i Analiz, 6 (1998), 1–80 (Russian); English transl.: St. Petersburg Math. J., 6 (1999), 1–69.
  17. Q. Fang, Multipliers of Drury–Arveson space: a survey, pp. 99-116 in: Oper. Theory Adv. Appl., vol. 272, Birkhäuser, 2019.
  18. Ph. Hartman, Multiplicative sequences and Töplerian (L2)-bases, Duke Math. J., 14 (1947), 755–767.
  19. H. Hedenmalm, P. Lindquist, and K. Seip, A Hilbert space of Dirichlet series and sytems of dilated functions in L2(0, 1), Duke Math. J., 86 (1997), 1–37.
  20. H. Hedenmalm, P. Lindquist, and K. Seip, Addendum to “A Hilbert space of Dirichlet series and sytems of dilated functions in L2(0, 1)”, Duke Math. J., 99 (1999), 175–178.
  21. D. Hilbert, Wesen und Ziele einer Analysis der unendlich vielen unabhängigen Variablen, Rend. Cir. Mat. Palermo 27 (1909).
  22. K. Kellay, F. LeManach, M. Zarrabi, Cyclicity in Dirichlet type spaces, Contemp. Math., v.743, 181–193, Amer. Math. Soc., Providence, RI, 2020.
  23. E. Kerlin, A. Lambert, Strictly cyclic shifts on ℓp, Acta Sci. Math. (Szeged), 35 (1973), 87–94.
  24. G. Knese, L. Kosinski, T. Ransford, A. Sola, Cyclic polynomials in anisotropic Dirichlet spaces, J. Anal. Math., 138:1 (2019), 23–47.
  25. L. Kosinski, D. Vavitsas, Cyclic polynomials in Dirichlet-type spaces in the unit ball of ℂ2, arXiv:2212.12013v1, 19pp, 2022.
  26. V. Ya. Kozlov, On the completeness of systems of functions {φ(nx)} in the space L2(0, 2π)(Russian), Doklady Akad. Nauk SSSR, 61 (1948), 977–980.
  27. V. Ya. Kozlov, On the completeness of the system of functions {φ(nx)} in the space of odd functions from L2(0, 2π)(Russian), Doklady Akad. Nauk SSSR, 62 (1948), 13–16.
  28. V. Ya. Kozlov, On the completeness of a system of functions of type {φ(nx)} in the space L2(Russian), Doklady Akad. Nauk SSSR, 73 (1950), 441–444.
  29. F. Le Manach, Sur l’approximation et la complétude des translatés dans les espaces de fonctions, Thèse de Doctorat, 108 pp. Univ. Bordeaux, 2018 (HAL https://Imf.alea.ovh/Recherche/These/memoire.pdf).
  30. F. Le Manach, Cyclicity in weighted ℓp spaces, Preprint, https://HAL.archives-ouvertes.fr/hal-01483933v1.
  31. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, vol. I & II, Springer-Verlag, Berlin etc., 1979.
  32. R. Merris, Combinatorics, J.Wiley, 2003.
  33. B. Mityagin, Systems of dilated functions: completeness, minimality, basisness, Funct. Anal. Appl., 51:3 (2017), 236–239; see also arXiv:1612.06791v (20 Dec 2016).
  34. Multiplicative function, https://en.wikipedia.org/wiki/Multiplicative_function.
  35. J. Neuwirth, J. Ginsberg, and D. Newman, Approxiamtion by f(kx), J. Funct. Anal., 5 (1970), 194–203.
  36. N. Nikolski, Basicity and unicellularity of weighted shift operators, Izvestia Akad. Nauk SSSR, Ser. Mat. 32 (1968), 1123–1137 (Russian); Engl. transl.: MatH. URSS Izv. 2 (1968), 1077–1090.
  37. N. Nikolski, Spectral synthesis for a shift operator and zeroes in certain classes of analytic functions smooth up to the boundary, Dokl. Akad. Nauk SSSR, 190 (1970), 780–783 (Russian); Engl. transl.: Soviet Math. Dokl. 11 (1970), 206–209.
  38. N. Nikolski, Selected problems of weighted approximation and spectral analysis, Trudy Math. Inst. Steklova, vol. 120, Moscow (Russian); English transl.: Proc. Steklov Math. Inst., No 120 (1974), AMS, Providence, 1976.
  39. N. Nikolski, Two problems on the spectral synthesis, Zapiski Nauchn. Seminarov LOMI, 81, 139–141; reprinted in: J. Soviet Math. 26 (1984), 2185–2186; reprinted in Lect. Notes Math., Springer-Verlag, vol. 1043 (1984), 378–381.
  40. N. Nikolski, Treatise on the shift operator, Springer-Verlag, Berlin etc., 1986 (Russian original: Lekzii ob operatore sdviga, “Nauka”, Moskva, 1980)
  41. N. Nikolski, In a shadow of the RH: Cyclic vectors of Hardy spaces on the Hilbert multidisc,Ann. Inst. Fourier, 62:5 (2012), 1601–1626.
  42. N. Nikolski, Binomials whose dilations generate H2(D), Algebra and Analysis (St. Petersburg), 29:6 (2017), 159–177.
  43. N. Nikolski, Addendum and Corrigendum to the paper “In a shadow of the RH: cyclic vectors of Hardy spaces on the Hilbert multidisc, Ann. Inst. Fourier, 62:5 (2012), 1601–1626”, Ann. Inst. Fourier (Grenoble), 68:2 (2018), 563–567.
  44. N. Nikolski, The current state of the dilation completeness problem, A PPT talk in the MSU analysis seminar 2018, and in the KCL (London) analysis seminar 2017.
  45. N. Nikolski, Hardy Spaces, Cambridge Univ. Press, 2019.
  46. B. Nyman, On the one-dimensional translation group and semi-group in certain function spaces, Thesis, Uppsala Univ., 1950.
  47. J. Ortega, J. Fabrega, Multipliers in Hardy–Sobolev spaces, Integral Eq. Operator Theory, 55(4) (2006), 535–560.
  48. https://en.wikipedia.org/wiki/Pascal%27s_triangle
  49. G. Polya and G. Szegő, Problems and theorems in Analysis, Vol. I & II, Springer, 1976 (for 3rd English edition); for original German edition “Aufgaben und Lehrsätze aus der Analysis”, Band I & II, Springer, Berlin, 1925).
  50. H. Queffélec, Espaces de séries de Dirichlet et leurs opérateurs de composition, Annales math. Blaise Pascal, 22 N S2 (2015), 267–314.
  51. S. Richter, C. Sundberg, Cyclic vectors in the Drury-Arveson space, ESI Workshop on “Operator related function theory”, 2012 (web.math.utk.edu/~richter/talk/), https://web.math.utk.edu/~richter/talk/Richter_Cyclic_Drury_Arveson2012.pdf.
  52. S. Richter, J. Sunkes, Hankel operators, invariant subspaces, and cyclic vectors in the Drury-Arveson space, Proc. Amer. Math. Soc., 114:6 (2016), 2575–2586.
  53. N. P. Romanov, Hilbert space and the theory of numbers, Izvestia Acad. Nauk SSSR, 10 (1946), 3–34 (Russian); MR0016390.
  54. W. Rudin, Function theory in polydiscs, W. A. Benjamin, Inc, N.Y.-Amsterdam, 1969.
  55. W. Rudin, Function theory in the unit ball of ℂn, Springer-Verlag, Berlin-N.Y., 1980.
  56. O. Shalit, Operator theory and function theory in Drury-Arveson space and its quotients, in “Operator Theory, Adv. and Appl.” (ed.: D. Alpay), pp. 1–50, Springer, Basel, 2014.
  57. A. Shields, Weighted shift operators and analytic function theory, pp. 49–128 in: Topics in operator theory, ed. C. Pearcy, Math. Surveys No 13, Amer. Math. Soc., 1974, Providence.
  58. https://en.wikipedia.org/wiki/Vandermonde%27s_identity
  59. J. Wermer, On a class of normed rings, Ark. Mat. 2:6 (1954), 537–551.
  60. A. Wintner, Diophantine approximation and Hilbert’s space, Amer. J. Math., 66 (1944), 564–578.
  61. K. Zhu, Spaces of holomorphic functions in the unit ball, Springer, N.Y., 2005.
Language: English
Page range: 238 - 275
Submitted on: Nov 2, 2022
Accepted on: Mar 17, 2023
Published on: Jun 7, 2023
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2023 Nikolai Nikolski, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.