Have a personal or library account? Click to login
Sums and products of periodic functions Cover
By: Robert Deville  
Open Access
|Jun 2023

References

  1. B. Farkas, V. Harangi, T. Keleti et S. G. Révesz, Invariant decomposition of functions with respect to commuting invertible transformations, Proc. Amer. Math. Soc.136, (2008) 1325-1336.
  2. B. Farkas and S. G. Révész, The periodic decomposition problem, AlSharawi, Ziyad (ed.) et al., Theory and applications of difference equations and discrete dynamical systems, Springer Proceedings in Mathematics and Statistics 102, 143-169 (2014).
  3. M.Laczkovich et S. G. Révész, Decompositions into periodic functions belonging to a given Banach space, Acta Math. Hung. 55 (1990), 353-363.
  4. S. Mortola et R. Peirone, The sum of periodic functions, Boll. Un. Mat. Ital.8 2-B (1999), 393-396.
  5. M. Wierdl, Continuous functions that can be represented as the sum of finitely many periodic functions, Mat. Lapok, 32 (1984), 107-113.
Language: English
Page range: 204 - 208
Submitted on: Sep 7, 2022
Accepted on: Dec 7, 2022
Published on: Jun 7, 2023
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2023 Robert Deville, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.