References
- B. Farkas, V. Harangi, T. Keleti et S. G. Révesz, Invariant decomposition of functions with respect to commuting invertible transformations, Proc. Amer. Math. Soc.136, (2008) 1325-1336.
- B. Farkas and S. G. Révész, The periodic decomposition problem, AlSharawi, Ziyad (ed.) et al., Theory and applications of difference equations and discrete dynamical systems, Springer Proceedings in Mathematics and Statistics 102, 143-169 (2014).
- M.Laczkovich et S. G. Révész, Decompositions into periodic functions belonging to a given Banach space, Acta Math. Hung. 55 (1990), 353-363.
- S. Mortola et R. Peirone, The sum of periodic functions, Boll. Un. Mat. Ital.8 2-B (1999), 393-396.
- M. Wierdl, Continuous functions that can be represented as the sum of finitely many periodic functions, Mat. Lapok, 32 (1984), 107-113.