Have a personal or library account? Click to login
H∞ interpolation constrained by Beurling–Sobolev norms Cover

H∞ interpolation constrained by Beurling–Sobolev norms

By: Anton Baranov and  Rachid Zarouf  
Open Access
|Jun 2023

References

  1. A. Baranov, R. Zarouf, H∞ interpolation and embedding theorems for rational functions, Integral Equations Operator Theory 91 (2019), no. 3, Paper No. 18, 19 pp.
  2. L. Baratchart, Rational and meromorphic approximation in Lp of the circle: system-theoretic motivations, critical points and error rates. In N. Papamichael, S. Ruscheweyh, and E. Saff, editors, Computational Methods and Function Theory, 45–78, World Scientific Publish. Co, 1999.
  3. L. Baratchart, F. Wielonsky, Rational approximation problem in the real Hardy space H2 and Stieltjes integrals: a uniqueness theorem, Constr. Approx. 9 (1993), 1–21.
  4. P. L. Duren, Theory of Hp Spaces, Academic Press, New York, 1970.
  5. H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman Spaces, Graduate Texts in Mathematics, 199, Springer-Verlag, New York, 2000.
  6. N. Nikolski, Condition Numbers of Large Matrices and Analytic Capacities, St. Petersburg Math. J. 17 (2006), 641–682.
  7. N. K. Nikolski, Operators, Functions, and Systems: an Easy Reading. Vol 1, Amer. Math. Soc. Surveys and Monographs, 92, AMS, Providence, RI, 2002.
  8. N. K. Nikolski, Treatise on the shift operator, Springer-Verlag, Berlin etc., 1986.
  9. V. Pták, A maximum problem for matrices, Linear Algebra Appl. 28 (1979), 193–204.
  10. V. Pták, N. J. Young, Functions of operators and the spectral radius, Linear Algebra Appl. 29 (1980), 357–392.
  11. O. Szehr, R. Zarouf, Maximum of the resolvent over matrices with given spectrum, J. Funct. Anal. 272 (2017), 2, 819–847.
  12. H. Triebel, Interpolation theory, functions spaces, differential operators, North-Holland Publishing Comp., 1978.
  13. N. J. Young, Norms of powers of matrices with constrained spectra, Linear Algebra Appl. 23 (1979), 227–244.
  14. R. Zarouf, Interpolation avec contraintes sur des ensembles finis du disque, C. R. Acad. Sci. Paris, Ser. I 347 (2009), 785–790.
  15. R. Zarouf, Effective H∞ interpolation constrained by Hardy and Bergman norms, Ann. Funct. Anal. 2 (2011), 2, 59–74.
  16. R. Zarouf, Effective H∞ interpolation, Houston J. Math. 39 (2013), 2, 487–514.
  17. R. Zarouf, Asymptotic sharpness of a Bernstein-type inequality for rational functions in H2, Algebra i Analiz 23 (2011), 152–166.
  18. R. Zarouf, Constrained interpolation on finite subsets of the disc, Thesis, Université de Bordeaux 1 (2008).
Language: English
Page range: 157 - 167
Submitted on: Oct 31, 2022
Accepted on: Jan 16, 2023
Published on: Jun 7, 2023
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2023 Anton Baranov, Rachid Zarouf, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.