References
- A. Baranov, R. Zarouf, H∞ interpolation and embedding theorems for rational functions, Integral Equations Operator Theory 91 (2019), no. 3, Paper No. 18, 19 pp.
- L. Baratchart, Rational and meromorphic approximation in Lp of the circle: system-theoretic motivations, critical points and error rates. In N. Papamichael, S. Ruscheweyh, and E. Saff, editors, Computational Methods and Function Theory, 45–78, World Scientific Publish. Co, 1999.
- L. Baratchart, F. Wielonsky, Rational approximation problem in the real Hardy space H2 and Stieltjes integrals: a uniqueness theorem, Constr. Approx. 9 (1993), 1–21.
- P. L. Duren, Theory of Hp Spaces, Academic Press, New York, 1970.
- H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman Spaces, Graduate Texts in Mathematics, 199, Springer-Verlag, New York, 2000.
- N. Nikolski, Condition Numbers of Large Matrices and Analytic Capacities, St. Petersburg Math. J. 17 (2006), 641–682.
- N. K. Nikolski, Operators, Functions, and Systems: an Easy Reading. Vol 1, Amer. Math. Soc. Surveys and Monographs, 92, AMS, Providence, RI, 2002.
- N. K. Nikolski, Treatise on the shift operator, Springer-Verlag, Berlin etc., 1986.
- V. Pták, A maximum problem for matrices, Linear Algebra Appl. 28 (1979), 193–204.
- V. Pták, N. J. Young, Functions of operators and the spectral radius, Linear Algebra Appl. 29 (1980), 357–392.
- O. Szehr, R. Zarouf, Maximum of the resolvent over matrices with given spectrum, J. Funct. Anal. 272 (2017), 2, 819–847.
- H. Triebel, Interpolation theory, functions spaces, differential operators, North-Holland Publishing Comp., 1978.
- N. J. Young, Norms of powers of matrices with constrained spectra, Linear Algebra Appl. 23 (1979), 227–244.
- R. Zarouf, Interpolation avec contraintes sur des ensembles finis du disque, C. R. Acad. Sci. Paris, Ser. I 347 (2009), 785–790.
- R. Zarouf, Effective H∞ interpolation constrained by Hardy and Bergman norms, Ann. Funct. Anal. 2 (2011), 2, 59–74.
- R. Zarouf, Effective H∞ interpolation, Houston J. Math. 39 (2013), 2, 487–514.
- R. Zarouf, Asymptotic sharpness of a Bernstein-type inequality for rational functions in H2, Algebra i Analiz 23 (2011), 152–166.
- R. Zarouf, Constrained interpolation on finite subsets of the disc, Thesis, Université de Bordeaux 1 (2008).