Have a personal or library account? Click to login
New asymmetric perturbations of FGM bivariate copulas and concordance preserving problems Cover

New asymmetric perturbations of FGM bivariate copulas and concordance preserving problems

Open Access
|Feb 2023

References

  1. [1] C. Amblard and S. Girard. Symmetry and dependence properties within a semi parametric family of bivariate copulas. Journal of Nonparametric Statistics, 14(6):715–727, (2002).10.1080/10485250215322
  2. [2] U. Banerjee. Dependence Analysis. Book series: Loop Transformations for Restructuring Compilers. Kluwer Academic Publishers: Boston, Dordrecht, London. (1997).
  3. [3] Ch. Blier-Wong, H. Cossettea and E. Marceau. Stochastic representation of FGM copulas using multivariate Bernoulli random variables. Computational Statistics and Data Analysis 173 (2022)107506.10.1016/j.csda.2022.107506
  4. [4] D.K.Bukovsek et al. Relation between non-exchangeability and measures of concordance of copulas, Journal of Mathematical Analysis and Applications, Volume 487, Issue 1, 2020,10.1016/j.jmaa.2020.123951
  5. [5] A. Charpentier. Mesures de risque. In Journées d’Etudes Statistique, Lunigny, Novembre 2010.
  6. [6] A. Dehgani, A. Dolati, and M. Ubeda-Flores. Measures of radial asymmetry for bivariate random vectors. Statistical Papers, 1-16. (2013)
  7. [7] F. Durante A. McNeil, J. Neslehovà, Bivariate copulas generated by perturbations, Fuzzy Sets and Systems 228, 137–144, (2013).10.1016/j.fss.2012.08.008
  8. [8] F. Durante, J. Fernandez-Sanchez, C. Sempi. A topological proof of Sklar’s theorem. Appl. Math. Lett. 26(9) (2013) 945–948.10.1016/j.aml.2013.04.005
  9. [9] A. Durante, J. McNeil and J. Neslehova, Bivariate copulas generated by perturbations. Fuzzy Sets and Systems. Volume 228, 137-144, (2013).10.1016/j.fss.2012.08.008
  10. [10] H.Dette, K.F Siburg and P. Stoimenov A copula based nonparametric measure of regression dependence. A copula-based non-parametric measure of regression dependence. Scand. J. Stat. 40 (2013), no. 1, 21–41.10.1111/j.1467-9469.2011.00767.x
  11. [11] F.Griessenberger and W. Trutschnig, Maximal asymmetry of bivariate copulas and consequences to measures of dependence. Dependence Modeling.n. 1 volume. 10, (2022).10.1515/demo-2022-0115
  12. [12] M. Hollander, A nonparametric test for bivariate symmetry. Biometrika 58:203–212. (1971)10.1093/biomet/58.1.203
  13. [13] L. karbil Et Al. Asymmetry quantification in cross modal retrieval using copulas. Journal of Mathematical and Computational Science. Volume 12. (2022)
  14. [14] EP. Klement, R. Mesiar How non-symmetric can a copula be? Comment. Math Univ Carol 47(1): 141–148. (2006)
  15. [15] J. Lee, Y. M. Kim. Generalized nonlinear percentile regression using asymmetric maximum likelihood estimation. Communications for Statistical Applications and Methods 2021;28:627-641.10.29220/CSAM.2021.28.6.627
  16. [16] E. Liebscher. Construction of asymmetric multivariate copulas. Journal of Multivariate Analysis, (2008) Volume 99, 2234–2250.10.1016/j.jmva.2008.02.025
  17. [17] J.F Mai and M. Scherer On the structure of exchangeable extreme-value copulas. Journal of Multivariate Analysis. volume 180, 104-670. (2020).10.1016/j.jmva.2020.104670
  18. [18] S. Mukherjeea et.al, Construction of bivariate asymmetric copulas.Communications for Statistical Applications and Methods. 2018, Vol. 25, No. 2, 217–234.10.29220/CSAM.2018.25.2.217
  19. [19] R.B. Nelsen, Some concepts of bivariate symmetry. Journal of Nonparametric Statistics 3:95–101, (1993).10.1080/10485259308832574
  20. [20] R.B. Nelsen Extremes of nonexchangeability. Stat. Papers 48(2):329–336. (2007)10.1007/s00362-006-0336-5
  21. [21] R.B. Nelsen, An Introduction to Copulas. Springer Series in Statistics. Springer Science+Business Media, Inc., New York, 2nd edition, (2006).
  22. [22] S. Saminger-Platz, A.Kolesàrovà, A. Seligaetal. The impact on the properties of the EFGM copulas when extending this family. Fuzzy Sets and Systems, Volume 415, Pages 1-26, (2021).10.1016/j.fss.2020.11.001
  23. [23] A. Sani and L. Karbil A functional treatment of asymmetric copulas. EJMAA 8(1) 17-26. (2020).10.21608/ejmaa.2020.312803
  24. [24] K. Siburg et al. An order of asymmetry in copulas, and implications for risk management. Insurance: Mathematics and Economics. Volume 68, 247-251. (2016)10.1016/j.insmatheco.2016.03.008
  25. [25] A. Sklar; Fonctions de répartitionà n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris. 8, 229-231. (1959)
  26. [26] A.Sklar Random variables, joint distribution functions and copulas Kybernetica, Volume 9, pages; 449-460. (1973).
Language: English
Page range: 111 - 126
Submitted on: Nov 5, 2022
Accepted on: Jan 20, 2023
Published on: Feb 1, 2023
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2023 Mohamed El maazouz, Ahmed Sani, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.