Have a personal or library account? Click to login
Existence of solutions for 4p-order PDES with Neumann boundary conditions Cover

Existence of solutions for 4p-order PDES with Neumann boundary conditions

By: N. Moradi,  F. Moradi,  S. El Habib and  M. Addam  
Open Access
|Feb 2023

Abstract

In this work, we study the existence of at least one non decreasing sequence of nonnegative eigenvalues for the problem: { Δ2pu=λm(x)uinΩ,uv=(Δu)v==(Δ2p-1u)v=0onΩ. \left\{ {\matrix{ {{\Delta ^{2p}}u = \lambda m\left( x \right)u\,\,\,in\,\,\,\Omega ,} \cr {{{\partial u} \over {\partial v}} = {{\partial \left( {\Delta u} \right)} \over {\partial v}} = \ldots = {{\partial \left( {{\Delta ^{2p - 1}}u} \right)} \over {\partial v}} = 0\,\,\,on\,\,\,\partial \Omega .} \cr } } \right. Where Ω is a bounded domain in ℝN with smooth boundary ∂ Ω, p ∈ ℕ*, mL (Ω), and Δ2pu := Δ (Δ...( Δu)), 2p times the operator Δ.

Language: English
Page range: 65 - 74
Submitted on: Sep 30, 2022
Accepted on: Jan 16, 2023
Published on: Feb 1, 2023
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2023 N. Moradi, F. Moradi, S. El Habib, M. Addam, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.