Have a personal or library account? Click to login
Numerical comparison of three a posteriori error estimators for nonconforming finite element method Cover

Numerical comparison of three a posteriori error estimators for nonconforming finite element method

Open Access
|Feb 2023

References

  1. [1] B. Achchab, A. Agouzal, J. Baranger, and F. Oudin. Estimations d’erreurs en lois de comportement. Comptes Rendus de l’Académie des Sciences-Séries I-Mathematics, 326(8):1007–1010, 1998.10.1016/S0764-4442(98)80131-6
  2. [2] B. Achchab, A. Agouzal, and K. Bouihat. A posteriori error estimates for non conforming approximation of quasi Stokes problem. Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées, 16:47–66, 2013.10.46298/arima.1963
  3. [3] B. Achchab, A. Agouzal, and K. Bouihat, A. Majdoubi and A. Souissi. Projection stabilized nonconforming finite element methods for the Stokes problem. Numerical Methods for Partial Differential Equations, 33(1):218–240, 2017.10.1002/num.22083
  4. [4] B. Achchab, A. Agouzal, N. Debit, and K. Bouihat. Star-based a posteriori error estimates for elliptic problems. Journal of Scientific Computing, 60(1):184–202, 2014.10.1007/s10915-013-9793-x
  5. [5] B. Achchab, A. Agouzal, A. Majdoubi, D. Meskine, and A. Souissi. A posteriori error analysis for nonconforming approximations of an anisotropic elliptic problem. Numerical Methods for Partial Differential Equations, 31(3):950–976, 2015.10.1002/num.21929
  6. [6] B. Achchab, A. Majdoubi, D. Meskine, and A. Souissi. A posteriori error analysis using the constitutive law for the Crouzeix–Raviart element. Applied Mathematics Letters, 22(8):1309–1314, 2009.10.1016/j.aml.2008.10.007
  7. [7] A. Agouzal. A posteriori error estimator for nonconforming finite element methods. Applied Mathematics Letters, 7(5):61 – 66, 1994.10.1016/0893-9659(94)90074-4
  8. [8] A. Agouzal. A posteriori error estimators for nonconforming approximation. Mathematical Modelling and Numerical Analysis, 5(1):77–85, 2008.
  9. [9] M. Ainsworth. Robust a posteriori error estimation for nonconforming finite element approximation. SIAM Journal on Numerical Analysis, 42(6):2320–2341, 2005.10.1137/S0036142903425112
  10. [10] D. Alsheikh and T. Katsaounis. A posteriori error estimators for discontinuous Galerkin method for diffusion problems, based on the hypercircle method. Arabian Journal of Mathematics, 11(3):407–426, 2022.10.1007/s40065-022-00386-w
  11. [11] I Babuška and C. Rheinboldt. Error estimates for adaptive finite element computations. SIAM Journal on Numerical Analysis, 15(4):736–754, 1978.10.1137/0715049
  12. [12] R.E. Bank and A. Weiser. Some a posteriori error estimators for elliptic partial differential equations. Mathematics of Computation, 44(170):283–301, 1985.10.1090/S0025-5718-1985-0777265-X
  13. [13] R. E Bank and B.D. Welfert. A posteriori error estimates for the Stokes equations: a comparison. Computer Methods in Applied Mechanics and Engineering, 82(1-3):323–340, 1990.10.1016/0045-7825(90)90170-Q
  14. [14] R.E. Bank and B.D. Welfert. A posteriori error estimates for the Stokes problem. SIAM Journal on Numerical Analysis, 28(3):591–623, 1991.10.1137/0728033
  15. [15] C. Bernardi, B. Métivet, and R; Verfürth. Analyse numérique d’indicateurs d’erreur. in Maillage et adaptation. P.-L. George Ed., Hermès, pages 251–278, 2001.
  16. [16] K. Bouihat. Estimations d’erreurs pour les méthodes deséléments finis non conformes et des volumes finis [Error estimates for non conforming finite element and finite volume methods]. Phd, University Hassan 1, Faculty of Science and Technology, Settat, May 2012.
  17. [17] D. Braess. An a posteriori error estimate and a comparison theorem for the nonconforming P1 element. Calcolo, 46(2):149–155, 2009.10.1007/s10092-009-0003-z
  18. [18] D. Braess and J. Schöberl. Equilibrated residual error estimator for edge elements. Mathematics of Computation, 77(262):651–672, 2008.10.1090/S0025-5718-07-02080-7
  19. [19] E. Burman and A. Ern. Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations. Mathematics of Computation, 76(259):1119–1140, 2007.10.1090/S0025-5718-07-01951-5
  20. [20] C. Carstensen, R. Klose, and A. Orlando. Reliable and efficient equilibrated a posteriori finite element error control in elastoplasticity and elastoviscoplasticity with hardening. Computer Methods in Applied Eechanics and Engineering, 195(19):2574–2598, 2006.10.1016/j.cma.2005.05.016
  21. [21] C. Carstensen and C. Merdon. Estimator competition for Poisson problems. Journal of Computational Mathematics, 28(3):309–330, 2010.10.4208/jcm.2009.10-m1015
  22. [22] C. Carstensen and C. Merdon. Computational survey on a posteriori error estimators for nonconforming finite element methods for the Poisson problem. Journal of Computational and Applied Mathematics, 249:74–94, 2013.10.1016/j.cam.2012.12.021
  23. [23] C. Carstensen and C. Merdon. A posteriori error estimator competition for conforming obstacle problems. Numerical Methods for Partial Differential Equations, 29(2):667–692, 2013.10.1002/num.21728
  24. [24] C. Carstensen and S.A. Funken. Constants in Clément-interpolation error and residual based a posteriori estimates in finite element methods. East-West Journal of Numerical Mathematics, 8(3):153–175, 2000.
  25. [25] C. Carstensen, T. Gudi, and M. Jensen. A unifying theory of a posteriori error control for discontinuous Galerkin fem. Numerische Mathematik, 112(3):363–379, 2009.10.1007/s00211-009-0223-9
  26. [26] C. Carstensen and C. Merdon. Computational survey on a posteriori error estimators for the Crouzeix-Raviart nonconforming finite element method for the Stokes problem. Computational Methods in Applied Mathematics, 14(1):35–54, 2014.10.1515/cmam-2013-0021
  27. [27] P.G. Ciarlet. The finite element method for elliptic problems. North-Holland, Amsterdam, 1978.10.1115/1.3424474
  28. [28] M. Crouzeix and P.-A. Raviart. Conforming and nonconforming finite element methods for solving the stationary Stokes equations i. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, 7(R3):33–75, 1973.10.1051/m2an/197307R300331
  29. [29] E. Dari, R. Duran, C. Padra, and V. Vampa. A posteriori error estimators for nonconforming finite element methods. ESAIM: Mathematical Modelling and Numerical Analysis, 30(4):385–400, 1996.10.1051/m2an/1996300403851
  30. [30] E. Dari, R. Durán, and C. Padra. Error estimators for nonconforming finite element approximations of the Stokes problem. Mathematics of Computation, 64(211):1017–1033, 1995.10.1090/S0025-5718-1995-1284666-9
  31. [31] P. Destuynder and B. Métivet. Explicit error bounds for a nonconforming finite element method. SIAM Journal on Numerical Analysis, 35(5):2099–2115 (electronic), 1998.10.1137/S0036142996300191
  32. [32] W. Dörfler and M. Ainsworth. Reliable a posteriori error control for nonconforming finite element approximation of Stokes flow. Mathematics of Computation, 74(252):1599–1619, 2005.10.1090/S0025-5718-05-01743-6
  33. [33] A. Ern, A. F. Stephansen, and M. Vohralík. Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection–diffusion–reaction problems. Journal of Computational and Applied Mathematics, 234(1):114–130, 2010.10.1016/j.cam.2009.12.009
  34. [34] A. Ern and M. Vohralík. Flux reconstruction and a posteriori error estimation for discontinuous Galerkin methods on general nonmatching grids. Comptes Rendus Mathematique, 347(7):441–444, 2009.10.1016/j.crma.2009.01.017
  35. [35] A. Ern and M. Vohralík. Four closely related equilibrated flux reconstructions for nonconforming finite elements. Comptes Rendus Mathematique, 351(1):77–80, 2013.10.1016/j.crma.2013.01.001
  36. [36] V. Girault and P.-A. Raviart. Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin, 1986.10.1007/978-3-642-61623-5
  37. [37] A. Hannukainen, R. Stenberg, and M. Vohralík. A unified framework for a posteriori error estimation for the Stokes problem. Numerische Mathematik, 122(4):725–769, 2012.10.1007/s00211-012-0472-x
  38. [38] O. A Karakashian and F. Pascal. A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM Journal on Numerical Analysis, 41(6):2374–2399, 2003.10.1137/S0036142902405217
  39. [39] D. Kay and D. Silvester. A posteriori error estimation for stabilized mixed approximations of the Stokes equations. SIAM Journal on Scientific Computing, 21(4):1321–1336, 1999.10.1137/S1064827598333715
  40. [40] K. Kim. A posteriori error analysis for locally conservative mixed methods. Mathematics of Computation, 76(257):43–66, 2007.10.1090/S0025-5718-06-01903-X
  41. [41] P. Ladevèze and D. Leguillon. Error estimate procedure in the finite element method and applications. SIAM Journal on Numerical Analysis, 20(3):485–509, 1983.10.1137/0720033
  42. [42] P. Morin, R. Nochetto, and K. Siebert. Local problems on stars: a posteriori error estimators, convergence, and performance. Mathematics of Computation, 72(243):1067–1097, 2003.10.1090/S0025-5718-02-01463-1
  43. [43] W. Prager and J. L. Synge. Approximations in elasticity based on the concept of function space. Quarterly of Applied Mathematics, 5(3):241–269, 1947.10.1090/qam/25902
  44. [44] Y. Shen, W. Gong, and N. Yan. Convergence of adaptive nonconforming finite element method for Stokes optimal control problems. Journal of Computational and Applied Mathematics, 412:114336, 2022.10.1016/j.cam.2022.114336
  45. [45] L. Sun and Y. Yang. The a posteriori error estimates and adaptive computation of nonconforming mixed finite elements for the Stokes eigenvalue problem. Applied Mathematics and Computation, 421:126951, 2022.10.1016/j.amc.2022.126951
  46. [46] A. Veeser and R. Verfürth. Explicit upper bounds for dual norms of residuals. SIAM Journal on Numerical Analysis, 47(3):2387–2405, 2009.10.1137/080738283
  47. [47] R. Verfürth. A posteriori error estimation and adaptive mesh-refinement techniques. Journal of Computational and Applied Mathematics, 50(1):67 – 83, 1994.10.1016/0377-0427(94)90290-9
  48. [48] R. Verfürth. A review of a posteriori error estimation and adaptive mesh-refinement techniques, volume 1. Wiley-Teubner Chichester, 1996.
  49. [49] R. Verfürth. Error estimates for some quasi-interpolation operators. ESAIM: Mathematical Modelling and Numerical Analysis, 33(4):695–713, 1999.10.1051/m2an:1999158
  50. [50] M. Vohralík. Guaranteed and fully robust a posteriori error estimates for conforming discretizations of diffusion problems with discontinuous coefficients. Journal of Scientific Computing, 46(3):397–438, 2011.10.1007/s10915-010-9410-1
  51. [51] B. Wohlmuth and R. Hoppe. A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart-Thomas elements. Mathematics of Computation of the American Mathematical Society, 68(228):1347–1378, 1999.10.1090/S0025-5718-99-01125-4
Language: English
Page range: 1 - 26
Submitted on: Nov 26, 2022
Accepted on: Dec 28, 2022
Published on: Feb 1, 2023
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2023 B. Achchab, A. Agouzal, K. Bouihat, A. Majdoubi, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.