Have a personal or library account? Click to login
Convergence of a finite volume scheme for a parabolic system applied to image processing Cover

Convergence of a finite volume scheme for a parabolic system applied to image processing

Open Access
|Oct 2022

References

  1. [1] L. Afraites, A. Atlas, F. Karami,D. Meskine, Some class of parabolic systems applied to image processing. Discrete and Continuous Dynamical Systems-B. 2016;21(6):1671.10.3934/dcdsb.2016017
  2. [2] L. Ambrosio, N. Fusco, D. Pallara. Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, USA (2000)
  3. [3] H. Attouch, G. Buttazzo, G. Michaille, Variational analysis in Sobolev and BV spaces: applications to PDEs and optimization, Vol. 17, Siam, 2014.10.1137/1.9781611973488
  4. [4] M. Bendahmane, K.H. Karlsen. Convergence of a finite volume scheme for the bidomain model of cardiac tissue. Applied numerical mathematics. Applied numerical mathematics, 59(9), 2266-2284.10.1016/j.apnum.2008.12.016
  5. [5] M. Bendahmane, M. Sepulveda. Convergence of a finite volume scheme for nonlocal reaction-diffusion systems modelling an epidemic disease. arXiv preprint arXiv:0803.3502.
  6. [6] H. Brezis. Analyse fonctionnelle, Théorie et Applications. Masson, Paris, 1983.
  7. [7] C. Chainais-Hillairet, J-G Liu, Y-J Peng. Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis. OM2AN Math. Model. Numer. Anal.,37(2):319-338, 2003.10.1051/m2an:2003028
  8. [8] A. Chambolle, P.L. Lions. Image recovery via total variation minimization and related problems. Numer. Math. 76 (1997) 167-188.
  9. [9] F. Catté, P.-L. Lions, J.-M. Morel, T. Coll. Image selective smoothing and edge detection by nonlinear diffusion. SIAM Journal on Numerical Analysis 29 (1) (1992) 182–193.10.1137/0729012
  10. [10] R. Eymard, Th. Gallou¨et, R. Herbin. Finite volume methods. in: Handbook of Numerical Analysis, vol. VII, North-Holland, Amsterdam, 2000.10.1016/S1570-8659(00)07005-8
  11. [11] Z. Guo, Q. Liu, J. Sun, B. Wu, Reaction-diffusion systems with p(x)-growth for image denoising, NonLinear Analysis : Real World App.
  12. [12] Z. Guo, J. Yin, Q. Liu, On a reaction-diffusion system applied to image decomposition, Math. and Comp. Modelling
  13. [13] A. Handlovicov á, K. Mikula, F. Sgallari, Variational numerical methods for solving nonlinear diffusion equations arising in image processing, Journal of Visual Communication and Image Representation 13 (12) (2002) 217 – 237.10.1006/jvci.2001.0479
  14. [14] Z. Kriv á. Explicit FV scheme for the Perona-Malik equation. Comput. Methods. in Appl. Math., 5(2), 170-200, 2005.10.2478/cmam-2005-0009
  15. [15] J.-L. Lions. Quelques méthodes de résolution des probl‘emes aux limites non linéaires. Dunod, Paris, 1969.
  16. [16] Y. Meyer. Oscillating Patterns in Image Processing and Nonlinear Evolution Equations.in: Univ. Lecture Ser., AMS, Providence, RI, 2002.10.1090/ulect/022
  17. [17] K. Mikula and N. Ramarosy. Semi-implicit finite volume scheme for solving nonlinear diffusion equations in image processing. Numer. Math., 89 (2001), no. 3, pp. 561-590.10.1007/PL00005479
  18. [18] S. Osher, A. Solé, L. Vese, Image decomposition and restoration using total variation minimization and the H−1 norm, SIAM Journal on Multiscale Modeling and Simulation 1 (3) (2003) 349–370.10.1137/S1540345902416247
  19. [19] P. Perona, J. Malik, Scale space and edge detection using anisotropic diffusion, IEEE, Trans, Pattern anal. Match.Intell 12(1990), 629-639.10.1109/34.56205
  20. [20] L. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D 60 (1992) 259–268.10.1016/0167-2789(92)90242-F
  21. [21] R. Temam, Navier–Stokes Equations, Theory and Numerical Analysis, 3rd revised edition, North-Holland, Amsterdam, 2001, reprinted in the AMS Chelsea series, Amer. Math. Soc., Providence, RI.
Language: English
Page range: 401 - 437
Submitted on: Jun 18, 2022
Accepted on: Sep 24, 2022
Published on: Oct 11, 2022
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2022 Jamal Attmani, Abdelghafour Atlas, Fahd Karami, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.