Have a personal or library account? Click to login
A γ-power stochastic Lundqvist-Korf diffusion process: Computational aspects and simulation Cover

A γ-power stochastic Lundqvist-Korf diffusion process: Computational aspects and simulation

By: El Azri Abdenbi and  Nafidi Ahmed  
Open Access
|Oct 2022

References

  1. [1] A. Amaro, D. Reed, M. Tomé, I. Themido, Modelling dominant height growth: Eucalyptus plantations in Portugal, For. Sci., 44 (1998), 37-46.
  2. [2] R. Gutiérrez, A. Nafidi, R. Gutiérrez-Sánchez, Forecasting total natural-gas consumption in Spain by using the stochastic Gompertz innovation diffusion model, Applied Energy, 80(2) (2005), 115-124.10.1016/j.apenergy.2004.03.012
  3. [3] R. Gutiérrez, P. Román, F. Torres, Inference and first-passagetime for the lognormal diffusion process with exogenous factors: application to modelling in economics, Appl. Stoch. Models Bus. Ind., 15(4) (1999), 325-332.10.1002/(SICI)1526-4025(199910/12)15:4<325::AID-ASMB397>3.0.CO;2-F
  4. [4] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing, Science, 220(4598) (1983), 671-680.10.1126/science.220.4598.671
  5. [5] P. Kloeden, E. Platen, The numerical solution of stochastic differential equations, Springer, Berlin, Germany, 1992.10.1007/978-3-662-12616-5
  6. [6] A. Nafidi, A. El Azri, A stochastic diffusion process based on the Lundqvist-Korf growth: Computational aspects and simulation, Mathematics and Computers in Simulation, 182 (2021), 25–38.10.1016/j.matcom.2020.10.022
  7. [7] A. Nafidi, A. El Azri, R. Gutiérrez-Sánchez, The Stochastic Modified Lundqvist-Korf Diffusion Process: Statistical and Computational Aspects and Application to Modeling of the CO2 Emission in Morocco, Stochastic Environmental Research and Risk Assessment, 36 (2022), 1163–1176.10.1007/s00477-021-02089-8
  8. [8] Ramón Gutiérrez Jáimez, Ramón Gutiérrez-Sánchez, Ahmed Nafidi, E. Ramos-A´ balos, A t-power stochastic gamma diffusion process: Computational statistical inference and simulation aspects. A real example, Appl. Math. Comput., 219 (2012), 1576–1588.
  9. [9] E.M. Ramos-A´ balos, R. Gutirrez-Snchez, A. Nafidi, Powers of the Stochastic Gompertz and Lognormal Diffusion Processes, Statistical Inference and Simulation, Mathematics, 8(4) (2020), 588–588.10.3390/math8040588
  10. [10] P. Román-Román, D. Romero, M.A. Rubio, F. Torres-Ruiz, Estimating the parameters of a Gompertz-type diffusion process by means of Simulated Annealing, Applied Mathematics and Computation, 218 (2012), 5121–5131.10.1016/j.amc.2011.10.077
  11. [11] P. Román-Román, F. Torres-Ruiz, Modelling logistic growth by a new diffusion process:application to biological systems, BioSystems, 110(1) (2012), 9-21.10.1016/j.biosystems.2012.06.004
  12. [12] M. Sánchez-González, M. Tomé, G. Montero, Modelling height and diameter growth of dominant cork oak trees in Spain, Ann. For. Sci., 62 (2005), 633-643.10.1051/forest:2005065
  13. [13] T. Sghaier, M. Palahi, S. Garchi, B. José Antonio, Ammari Youssef, Pique Miriam, Modeling Dominant Height Growth in Planted Pinus pinea Stands in Northwest of Tunisia, Hindawi Publishing Corporation, International Journal of Forestry Research, (2012), 1–12.10.1155/2012/902381
  14. [14] P.W. Zehna, Invariance of maximum likelihood estimators, Ann. Math. stat., 37 (1996), 744-744.10.1214/aoms/1177699475
Language: English
Page range: 364 - 374
Submitted on: Aug 13, 2022
Accepted on: Sep 24, 2022
Published on: Oct 11, 2022
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2022 El Azri Abdenbi, Nafidi Ahmed, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.