References
- [1] Alvino A, Boccardo L, Ferone V, Orsina L, Trombetti G, Existence results for nonlinear elliptic equations with degenerate coercivity, Annali di Matematica, 182 (2003), 53-79.10.1007/s10231-002-0056-y
- [2] Arcoya D, Boccardo L, Leonori T, Porretta A, Some elliptic problems with singular natural growth lower order terms, Calc. Var. Partial Differ. Equ, 37 (2010), 363-380.10.1007/s00526-009-0266-x
- [3] Arcoya D, Carmona J, Leonori T, Mart‘ınez-Aparicio P.J, Orsina L, Petitta F, Existence and nonexistence of solutions for singular quadratic quasilinear equations, J. Differential Equations, 246 (2009), 4006-4042.10.1016/j.jde.2009.01.016
- [4] Ayadi H, Souilah R, Existence and regularity results for unilateral problems with degenerate coercivity, J. Math. Slovaca, 6 (2019), 1351-1366.10.1515/ms-2017-0313
- [5] Boccardo L, Dirichlet problems with singular and gradient quadratic lower order terms, ESAIM Control Optim. Calculus Var, 14 (2008), 411-426.10.1051/cocv:2008031
- [6] Boccardo L, Dall’Aglio A, Orsina L, Existence and regularity results for some elliptic equations with degenerate coercivity, Dedicated to Prof. C. Vinti (Italian) (Perugia, 1996), Atti Sem. Mat. Fis. Univ. Modena 46 suppl, 5 (1998), 1-81.
- [7] Boccardo L, Gallouet T, Strongly nonlinear elliptic equations having natural growth terms and L1 data, Nonlmear Analysis, Theory, Methods Applications, 6 (1992), 573-579.
- [8] Boccardo L, Gallouët T, W01,1 solutions in some borderline cases of Calderon-Zygmund theory, J. Differential Equations, 253 (2012), 2698-2714.10.1016/j.jde.2012.07.003
- [9] Boccardo L, Murat F, Puel J.P, Existence de solutions non bornées pour certaines équations quasi-linéaires, Portugaliae Mathematica, 41 (1982), 1-4.
- [10] Boccardo L, Murat F, Puel J.P., L∞ estimate for some nonlinear elliptic partial differential equations and application to an existence result, SIAM J. Math. Anal, 23 (1992), 326-333.10.1137/0523016
- [11] Boccardo L, Mérida A.M, Orsina L, A class of quasilinear Dirichlet problems with unbounded coefficients and singular quadratic lower order terms, Milan J. Math, 83 (2015), 157-176.10.1007/s00032-015-0232-3
- [12] Boccardo L, Orsina L, Porzio M.M, Existence results for quasilinear elliptic and parabolic problems with quadratic gradient terms and sources, Adv. Calculus Var, 4 (2011), 397-419.
- [13] Croce G, An elliptic problem with degenerate coercivity and a singular quadratic gradient lower order term, American Institute of Mathematical Sciences, (2012), 507-730.10.3934/dcdss.2012.5.507
- [14] Crandall M.G, Rabinowitz P.H, Tartar L, On a Dirichlet problem with asingular nonlinearity, Commun. Partial Differ. Equ, 2 (1977), 193-222.10.1080/03605307708820029
- [15] Giachetti D, Murat F, An elliptic problem with a lower order term having singular behaviour Boll, Unione Mat. Ital, 2 (2009), 1-19.
- [16] Giachetti D, Petitta F, De León S.S, A priori estimates for elliptic problems with a strongly singular gradient term and a general datum, Differ. Integral Equ, 26 (2010), 302-336.
- [17] Giachetti D, Petitta F, De León S.S, Elliptic equations having a singular quadratic gradient term and a changing sign datum, Commun. Pure Appl. Anal, 11 (2012), 1875-1895.10.3934/cpaa.2012.11.1875
- [18] Hirano N, Saccon C, Shioji N, Multiple existence of positive solutions for singular elliptic problems with concave ad convex nonlinearities, Adv. Differ. Equ, 9 (2004), 197-220.
- [19] Leoni F, Nonlinear elliptic equatIions in ℝN with absorbing zero order terms, Advances in Differential Equations, 5 (2000), 681-722.10.57262/ade/1356651344
- [20] Lazer A.C, Mckenna P.J, On a singular nonlinear elliptic boundary-value problem, Proc. Am. Math. Soc, 111 (1991), 721-730.10.1090/S0002-9939-1991-1037213-9
- [21] Leoni F, Pellacci B, Local estimates and global existence for strongly nonlinear parabolic equations with locally integrable data, Journal of Evolution Equations, 6 (2006), 113-144.10.1007/s00028-005-0234-7
- [22] Martinez-Aparicio P.J, Singular Dirichlet problems with quadratic gradient, Boll. Unione Mat. Ital, 2 (2009), 559-574.
- [23] Lions J.L, Quelques méthodes de résolution des probl‘emes aux limites non linéaires, Dunod, (1969).
- [24] Porretta A, Uniqueness and homogeneization for a class of noncoercive operators in divergence form, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 915-936.