Have a personal or library account? Click to login
Theoretical and numerical analysis of a degenerate nonlinear cubic Schrödinger equation Cover

Theoretical and numerical analysis of a degenerate nonlinear cubic Schrödinger equation

Open Access
|May 2022

Abstract

In this paper, we are interested in some theoretical and numerical studies of a special case of a degenerate nonlinear Schrödinger equation namely the so-called Gross-Pitaevskii Equation(GPE). More precisely, we will treat in a first time the well-posedness of GPE model with a degeneracy occurring in the interior of the space variable domain, i.e ∃x0 ∈ (0, L), s. t k(x0) = 0, where k stands for the diffusion coefficient and L is a positive constant. Thereafter, we will focus ourselves on some numerical simulations showing the influence of a different parameters, especially the interior degeneracy, on the behavior of the wave solution corresponding to our model in a special case of the function k namely k(x) = |xx0| α, α ∈ (0, 1).

Language: English
Page range: 256 - 278
Submitted on: Jul 28, 2021
Accepted on: Apr 25, 2022
Published on: May 28, 2022
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 times per year

© 2022 Mohamed Alahyane, Abderrazak Chrifi, Younes Echarroudi, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.