[1] A. Anane, Simplicit et isolation de la premiere valeur propre du p-laplacien avec poids, C. R. Acad. Sci. Paris Ser. I Math. 305, no. 16 (1987), 725-728.
[2] A. Anane, O. Chakrone, N. Moradi, Regularity of the solutions to a nonlinear boundary problem with indefinite weight, Bol. Soc. Paran. Mat. V. 29, no. 1 (2011), 17-23.
[3] A. Anane and N. Tsouli, On the second eigenvalue of the p-Laplacian, in: Nonlinear partial differential equations (Fs, 1994), Pitman Res. Notes Math. Ser. 343, Longman, Harlow, 1996, pp. 1-9.
[4] L. Brasco, G. Franzina, Convexity properties of Dirichlet integrals and Picone type inequalities, Kodai Math. J., 37 (2014), 769-799.10.2996/kmj/1414674621
[6] E. DiBenedetto, C1+α local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7(8) (1983), 827-850.10.1016/0362-546X(83)90061-5
[7] P. Drabek, A. Kufner and F. Nicolosi, Quasilinear elliptic equations with degenerations and singularities, de Gruyter Series in Nonlinear Analysis and Applications, vol. 5, Walter de Gruyter and Co., Berlin, (1997)10.1515/9783110804775
[8] A. El Khalil and M. Ouanan, Boundary eigencurve problems involving the p-laplace operator, Electronic Journal of Differential Equations, Vol 2008, No. 78 (2008), 1-13.
[9] A. El Khalil and A. Touzani, On the first eigencurve of the p-Laplacian, Partial Differential Equations, Lecture Notes in Pure and Applied Mathematics Series 229, Marcel Dekker, Inc. (2002), 195-205.10.1201/9780203910108.ch16
[10] J. Fernández Bonder and J. D. Rossi, A nonlinear eigenvalue problem with indefinite weights related to the Sobolev trace embedding, Publ. Mat. 46 (1) (2002), 221-235.10.5565/PUBLMAT_46102_12
[11] J. P. Garcia Azorero and I. Peral Alonso, Existence and nonuniqueness for the p-Laplacian: nonlinear eigenvalues, Communications in Partial Differential Equation 12 (1987), 1389-1430.10.1080/03605308708820534
[14] B. Kawohl, M. Lucia and S. Prashanth, Simplicity of the principal eigenvalue for indefinite quasilinear problems, Adv. Differential Equations, 12 (4)(2007), 407-434.10.57262/ade/1355867457
[20] P. Tolksdorf, Regularity for a more general class of quasilinearelliptic equations, Electronic Journal of Differential Equations, 51(1) (1984), 126-150.10.1016/0022-0396(84)90105-0
[21] O. Torn, Steklov problem with an indefinite weight for the p-Laplacien, Electronic Journal of Differential Equations, Vol. 2005, No. 87 (2005), 1-8.
[23] A. Zerouali B. Karim, A. Anane and O. Chakrone, Two-Parameter Eigenvalues Steklov Problem involving the p-Laplacian, Advances in Dynamical Systems and Applications ISSN 0973-5321, Volume 8, Number 1 (2013), pp. 149-156