Have a personal or library account? Click to login
Jacobson’s Lemma in the ring of quaternionic linear operators Cover

Jacobson’s Lemma in the ring of quaternionic linear operators

Open Access
|Apr 2021

References

  1. [1] P. Aiena, M.T. Biondi and C. Carpintero, On Drazin invertibility, Proc. Amer. Math. Soc., 136 (2008), 2839–2848.10.1090/S0002-9939-08-09138-7
  2. [2] B. Aupetit, A primer on spectral theory, Springer Verlag, New York (1991).10.1007/978-1-4612-3048-9
  3. [3] B.A. Barnes, Common operator properties of the linear operators RS and SR, Proc. Amer. Math. Soc., 126 (1998), 1055–1061.10.1090/S0002-9939-98-04218-X
  4. [4] F. Colombo, J. Gantner and D.P. Kimsey, Spectral theory on the S-spectrum for quaternionic operators, Operator Theory: Advances and Applications, 270, Springer Basel (2019).
  5. [5] F. Colombo, I. Sabadini and D.C. Struppa, Noncommutative Functional Calculus, Birkhäuser Basel (2011).10.1007/978-3-0348-0110-2
  6. [6] D. Cvetkovi-Ili and R. Harte, On Jacobson’s lemma and Drazin invertibility, Appl. Math. Letters, 23 (2010), 417–420.10.1016/j.aml.2009.11.009
  7. [7] M.P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math. Monthly, 65 (1958), 506–514.10.1080/00029890.1958.11991949
  8. [8] R. Ghiloni, V. Moretti and A. Perotti, Continuous slice functional calculus in quaternionic Hilbert spaces, Rev. Math. Phys., 25 (2013) 1350006, 83 pp.
  9. [9] C.F. King, A note on Drazin inverses, Pacific J. Math., 70 (1977), 383–390.10.2140/pjm.1977.70.383
  10. [10] T.E. Lam and P.P. Nielsen, Jacobsons lemma for Drazin inverses, in: Contemp. Math.: Ring theory and its applications, 609 (2014), 185–196.10.1090/conm/609/12127
  11. [11] D. Mosi, Extensions of Jacobsons lemma for Drazin inverses, Aequationes Math., 91 (2017), 419–428.10.1007/s00010-017-0476-9
  12. [12] W. Rudin, Real and complex analysis, McGraw-Hill, New York (1986).
  13. [13] Z. Wang, A class of Drazin inverses in rings, Filomat, 31 (2017), 1781–1789.10.2298/FIL1706781W
  14. [14] K. Yan, Q. Zeng and Y. Zhu, Generalized Jacobson’s lemma for Drazin inverses and its applications, Linear Multilinear Algebra, 68 (2020), 81–93.10.1080/03081087.2018.1498828
Language: English
Page range: 461 - 469
Submitted on: Jun 18, 2020
Accepted on: Apr 13, 2021
Published on: Apr 30, 2021
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2021 El Hassan Benabdi, Mohamed Barraa, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.