References
- [1] A. Aissaoui Fqayeh, A. Benkirane and M. El Moumni. Entropy solutions for strongly nonlinear unilateral parabolic inequalities in Orlicz-Sobolev spaces. Applicationes Mathematicae, 41,2–3, (2014)pp: 185–193.10.4064/am41-2-6
- [2] A. Aissaoui Fqayeh, A. Benkirane, M. El Moumni and A. Youssfi. Existence of renormalized solutions for some strongly nonlinear elliptic equations in Orlicz spaces. Georgian Math. J. Volume 22, Number 3,(2015), pp:305–321.10.1515/gmj-2015-0038
- [3] Y. Akdim, M. Belayachi and M. El Moumni. L∞-bounds of solutions for strongly nonlinear elliptic problems with two lower order terms. Anal. Theory Appl., Vol. 33, No. 1, (2017) pp. 46–58.
- [4] Y. Akdim, A. Benkirane, S. M. Douiri and M. El Moumni. On a quasilinear degenerated elliptic unilateral problems with L1 data. Rend. Circ. Mat. Palermo, II. Ser (2018)67:43–57.10.1007/s12215-016-0291-5
- [5] Y. Akdim, A. Benkirane and M. El Moumni. Solutions of nonlinear elliptic problems with lower order terms. Annals of Functional Analysis (AFA), Volume 6, Number 1, (2015), pp: 34–53.10.15352/afa/06-1-4
- [6] Y. Akdim, A. Benkirane and M. El Moumni. Existence results for nonlinear elliptic problems with lower order terms. International Journal of Evolution Equations (IJEE), Volume 8, Number 4, (2014) pp: 1–20.
- [7] Y. Akdim, A. Benkirane, M. El Moumni and A. Fri. Strongly nonlinear variational parabolic initial-boundary value problems. Annals of the University of Craiova - Mathematics and Computer Science Series. Volume 41, Number 2(2014), pp: 1–13.
- [8] Y. Akdim, A. Benkirane, M. El Moumni and H. Redwane. Existence of renormalized solutions for nonlinear parabolic equations. Journal of Partial Differential Equations (JPDE), Volume 27, Number 1, (2014)pp: 28–49.10.4208/jpde.v27.n1.2
- [9] Y. Akdim, A. Benkirane, M. El Moumni and H. Redwane. Existence of renormalized solutions for strongly nonlinear parabolic problems with measure data. Georgian Math. J. Volume 23, Issue 3, (2016)pp: 303321.10.1515/gmj-2016-0011
- [10] Y. Akdim, M. El Moumni and A. Salmani. Existence Results for Nonlinear Anisotropic Elliptic Equation. Adv. Sci. Technol. Eng. Syst. J. 2(5), (2017)160-166.10.25046/aj020523
- [11] F. Andreu, J. M. Mazón, S. Segura de León and J. Toledo. Existence and uniqueness for a degenerate parabolic equation with L1-data. Trans. Amer. Math. Soc. 351 (1999) no.1, 285–306.
- [12] M. Bendahmane, K.H. Karlsen and M. Saad. Nonlinear anisotropic elliptic and parabolic equations with variable exponents and L1-data. Comm. Pure and Appl. Anal. 12 (2013) no.3, 1201–1220.
- [13] M. Bendahmane, M. Langlais and M. Saad. On some anisotropic reaction-diffusion systems with L1-data modeling the propagation of an epidemic disease. Nonlinear Anal., 54(4) (2003), 617–636.10.1016/S0362-546X(03)00090-7
- [14] M. Bendahmane and P. Wittbold. Renormalized solutions for nonlinear elliptic equations with variable exponents and L1-data. Nonlinear Analysis TMA 70 (2009) no.2, 567–583.
- [15] Ph. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, and J. L. Vázquez. An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 22(2) (1995), 241–273.
- [16] M. B. Benboubker, H. Chrayteh, M. El Moumni and H. Hjiaj. Entropy and renormalized solutions for nonlinear elliptic problem involving variable exponent and measure data. Acta Mathematica Sinica, English Series. Volume 31, Number 1,(2015), pp: 151–169.10.1007/s10114-015-3555-7
- [17] A. Benkirane, Y. El Hadfi and M. El Moumni. Renormalized solutions for nonlinear parabolic problems with L1- data in orlicz-sobolev spaces. Bulletin of Parana’s Mathematical Society (3s.) Volume 35, Number 1, (2017), pp: 57–84.10.5269/bspm.v35i1.27425
- [18] A. Benkirane, B. El Haji and M. El Moumni. On the existence of solutions for degenerate parabolic equations with singular terms. Pure and Applied Mathematics Quaterly. Volume 14, Number 3–4, (2018), 591–606.10.4310/PAMQ.2018.v14.n3.a8
- [19] A. Benkirane, M. El Moumni and A. Fri. An approximation of Hedberg’s type in Sobolev spaces with variable exponent and application. Chinese Journal of Mathematics, Volume 2014, Article ID 549051, (2014)7 pages.10.1155/2014/549051
- [20] A. Benkirane, M. El Moumni and A. Fri. Renormalized solution for strongly nonlinear elliptic problems with lower order terms and L1-data. Izvestiya RAN: Ser. Mat. (2017)81:3 3–20.10.4213/im8292
- [21] A. Benkirane, M. El Moumni and K. Kouhaila. Solvability of strongly nonlinear elliptic variational problems in weighted Orlicz-Sobolev spaces. SeMA Journal (2020) 77:119–142.10.1007/s40324-019-00205-x
- [22] D. Blanchard and F. Murat. Renormalised solutions of nonlinear parabolic problems with L1 data: existence and uniqueness. Proc. Roy. Soc. Edinburgh Sect. A, 127(6) (1997), 1137–1152.10.1017/S0308210500026986
- [23] L. Boccardo, J. I. Diaz, D. Giachetti, and F. Murat. Existence of a solution for a weaker form of a nonlinear elliptic equation. In Recent advances in nonlinear elliptic and parabolic problems (Nancy, 1988), volume 208 of Pitman Res. Notes Math. Ser., pages 229-246. Longman Sci. Tech., Harlow, 1989.
- [24] L. Boccardo, T. Gallouët, and P. Marcellini. Anisotropic equations in L1. Differential Integral Equations, 9(1) (1996), 209–212.
- [25] M. Bourahma and J. Bennouna and M. El Moumni. L∞-Bounds of solutions for a nonlinear degenerate elliptic equations in Musielak spaces. Moroccan J. of Pure and Appl. Anal. (MJPAA) Volume 6(1), 2020, Pages 16–33.10.2478/mjpaa-2020-0002
- [26] Y. Chen, S. Levine and M. Rao. Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66 (2006), 1383–1406.10.1137/050624522
- [27] G. Dal Maso, F. Murat, L. Orsina and A. Prignet. Renormalized solutions of elliptic equations with general measure data. Ann. Sc. Norm. Super. Pisa Cl. Sci.(4) 28 (4) (1999), 741-808.
- [28] R. J. DiPerna and P.-L. Lions. On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. of Math. (2), 130(2) (1989), 321–366.10.2307/1971423
- [29] B. El Haji, M. El Moumni and K. Kouhaila. On a nonlinear elliptic problems having large monotonocity with L1-data in weighted Orlicz-Sobolev spaces. Moroccan J. of Pure and Appl. Anal. (MJPAA) Volume 5(1), (2019), Pages 104-116.10.2478/mjpaa-2019-0008
- [30] M. El Moumni. Nonlinear elliptic equations without sign condition and L1-data in Musielak-Orlicz-Sobolev spaces. Acta. Appl. Math. 159:95–117(2019).10.1007/s10440-018-0186-x
- [31] M. El Moumni. Renormalized solutions for strongly nonlinear elliptic problems with lower order terms and measure data in Orlicz-Sobolev spaces. Iran. J. Math. Sci. Inform. Vol 14, No 1, (2019)pp 95–119.
- [32] M. El Moumni. Entropy solution for strongly nonlinear elliptic problems with lower order terms and L1-data. Annals of the University of Craiova - Mathematics and Computer Science Series. Volume 40, Number 2 (2013), pp: 211–225.
- [33] X.L. Fan, J. Shen and D. Zhao. Sobolev embedding theorems for spaces Wk,p(x)(Ω). J. Math. Anal. Appl. 262 (2001), 749–760.10.1006/jmaa.2001.7618
- [34] X.L. Fan and D. Zhao. On the spaces Lp(x)(𝒰) and Wm,p(x)(𝒰). J. Math. Anal. Appl. 263 (2001), 424–446.10.1006/jmaa.2000.7617
- [35] T. Harjulehto, P. Hästö, M. Koskenoja and S. Varonen. The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values. Potential Anal. 25 (2006) no.3, 205–222.
- [36] F. Li and H. Zhao. Anisotropic parabolic equations with measure data. J. Partial Differential Equations, 14(1) (2001), 21–30.
- [37] P.-L. Lions. Mathematical topics in fluid mechanics. Vol. 1, volume 3 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, New York, 1996.
- [38] J.-M. Rakotoson. Generalized solutions in a new type of sets for problems with measures as data. Differential Integral Equations, 6(1) (1993), 27–36.
- [39] J.-M. Rakotoson. Uniqueness of renormalized solutions in a T-set for the L1-data problem and the link between various formulations. Indiana Univ. Math. J., 43(2) (1994), 685–702.10.1512/iumj.1994.43.43029
- [40] M. Sanchon and M. Urbano. Entropy solutions for the p(x)-Laplace equation. To appear in Trans. American Math. Soc.
- [41] M. Troisi. Teoremi di inclusione per spazi di sobolev non isotropi. Ricerche. Mat., 18 (1969), 3–24.
- [42] A. Youssfi, A. Benkirane and M. El Moumni. Bounded solutions of unilateral problems for strongly nonlinear equations in Orlicz spaces. Electronic Journal of Qualitative Theory of Differential Equations (EJQTDE), Number 21, (2013)pp: 1–25.10.14232/ejqtde.2013.1.21
- [43] A. Youssfi, A. Benkirane and M. El Moumni. Existence result for strongly nonlinear elliptic unilateral problems with L1-data. Complex Variables and Elliptic Equations, Volume 59, Issue 4, (2014) pp: 447–461.10.1080/17476933.2012.725166