Have a personal or library account? Click to login
Limit cycles of discontinuous piecewise linear differential systems formed by centers or Hamiltonian without equilibria separated by irreducible cubics Cover

Limit cycles of discontinuous piecewise linear differential systems formed by centers or Hamiltonian without equilibria separated by irreducible cubics

Open Access
|Jan 2021

References

  1. [1] A. Andronov, A. Vitt and S. Khaikin, Theory of Oscillations, Pergamon Press, Oxford, 1966.
  2. [2] J.C. Artés, J. Llibre, J.C. Medrado and M.A. Teixeira, Piecewise linear differential systems with two real saddles, Math. Comput. Simul. 95 (2013), 13–22.10.1016/j.matcom.2013.02.007
  3. [3] R. Benterki and J. Llibre, The limit cycles of discontinuous piecewise linear differential systems formed by centers and separated by irreducible cubic curves I, to appear in Dynamics of Continuous, Discrete and Impulsive Systems-Series A, 2020.10.1007/s12591-021-00564-w
  4. [4] R. Benterki and J. Llibre, The limit cycles of discontinuous piecewise linear differential systems formed by centers and separated by irreducible cubic curves II, accepted to be published, 2020.10.1007/s12591-021-00564-w
  5. [5] R.Benterki and J.LLibre, Crossing Limit Cycles of Planar Piecewise Linear Hamiltonian Systems without Equilibrium Points. Mathematics 2020, 8, 755.10.3390/math8050755
  6. [6] M. di Bernardo, C.J. Budd, A.R. Champneys and P. Kowalczyk, Piecewise-Smooth Dynamical Systems: Theory and Applications, Appl. Math. Sci., vol. 163, Springer-Verlag, London, 2008.
  7. [7] R. Bix, Conics and cubics, Undergraduat Texts in Mathematics, Second Edition, Springer, 2006.
  8. [8] D.C. Braga and L.F.Mello, Limit cycles in a family of discontinuous piecewise linear differential systems with two zones in the plane, Nonlinear Dynam. 73 (2013) 128–1288.
  9. [9] R.D. Euzébio and J. Llibre, On the number of limit cycles in discontinuous piecewise linear differential systems with two pieces separated by a straight line, J. Math. Anal. Appl. 424(1) (2015), 475–486.10.1016/j.jmaa.2014.10.077
  10. [10] A.F. Fonseca, J. Llibre and L.F. Mello, Limit cycles in planar piecewise linear Hamiltonian systems with three zones without equilibrium points, to appear in Int. J. Bifurcation and Chaos, 2020.10.1142/S0218127420501576
  11. [11] E. Freire, E. Ponce, F. Rodrigo and F. Torres, Bifurcation sets of continuous piecewise linear systems with two zones, Int. J. Bifurcation and Chaos 8 (1998), 2073–2097.10.1142/S0218127498001728
  12. [12] E. Freire, E. Ponce and F. Torres, Canonical discontinuous planar piecewise linear systems, SIAM J. Appl. Dyn. Syst. 11(1)(2012), 181–211.10.1137/11083928X
  13. [13] J.J. Jimenez, J. Llibre and J.C. Medrado, Crossing limit cycles for a class of piecewise linear differential centers separated by a conic, Preprint, 2019.10.14232/ejqtde.2020.1.19
  14. [14] J. Llibre, D.D. Novaes and M.A. Teixeira, Limit cycles bifurcating from the periodic orbits of a discontinuous piecewise linear differential center with two zones, Int. J. Bifurcation and Chaos 25 (2015), 1550144, pp. 11.
  15. [15] J. Llibre and E. Ponce, Piecewise linear feedback systems with arbitrary number of limit cycles, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (2003), 895–904.10.1142/S0218127403007047
  16. [16] J. Llibre, E. Ponce and X. Zhang, Existence of piecewise linear differential systems with exactly n limit cycles for all n ∈ 𝕅, Nonlinear Anal. 54 (2003) 977–994.10.1016/S0362-546X(03)00122-6
  17. [17] J. Llibre and E. Ponce, Three nested limit cycles in discontinuous piecewise linear differential systems with two zones, Dyn. Contin. Discr. Impul. Syst., Ser. B 19 (2012), 325–335.
  18. [18] J. Llibre and M.A. Teixeira, Piecewise linear differential systems with only centers can create limit cycles ?, Nonlinear Dyn. 91 (2018), 249–255.10.1007/s11071-017-3866-6
  19. [19] J. Llibre and X. Zhang, Limit cycles for discontinuous planar piecewise linear differential systems separated by an algebraic curve, Int. J. Bifurcation and Chaos 29 (2019), 1950017, pp. 17.
  20. [20] O. Makarenkov and J.S.W. Lamb, Dynamics and bifurcations of nonsmooth systems: a survey, Phys. D 241 (2012), 1826–1844.10.1016/j.physd.2012.08.002
  21. [21] D.J.W. Simpson, Bifurcations in Piecewise-Smooth Continuous Systems, World Sci. Ser. Nonlinear Sci. Ser. A, vol. 69, World Scientific, Singapore, 2010.10.1142/7612
Language: English
Page range: 248 - 276
Submitted on: May 7, 2020
Accepted on: Dec 23, 2020
Published on: Jan 29, 2021
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2021 Loubna Damene, Rebiha Benterki, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.