Have a personal or library account? Click to login
Optimized Schwarz methods with general Ventcell transmission conditions for fully anisotropic diffusion with discrete duality finite volume discretizations Cover

Optimized Schwarz methods with general Ventcell transmission conditions for fully anisotropic diffusion with discrete duality finite volume discretizations

Open Access
|Dec 2020

References

  1. [1] B. Andreianov, F. Boyer, and F. Hubert. Discrete duality finite volume schemes for Leray-Lions type elliptic problems on general 2D-meshes. Num. Meth. for PDEs, 23(1):145–195, 2007.10.1002/num.20170
  2. [2] B. Andreianov, F. Hubert, and S. Krell. Benchmark 3D: a version of the DDFV scheme with cell/vertex unknowns on general meshes. In Finite Volumes for Complex Applications VI Problems & Perspectives, pages 937–948. Springer, 2011.10.1007/978-3-642-20671-9_91
  3. [3] D. N. Arnold, R. S. Falk, and R. Winther. Finite element exterior calculus, homological techniques, and applications. Acta numerica, 15:1–155, 2006.10.1017/S0962492906210018
  4. [4] D. Bennequin, M. J. Gander, and L. Halpern. A homographic best approximation problem with application to optimized Schwarz waveform relaxation. Mathematics of Computation, 78(265):185–223, 2009.10.1090/S0025-5718-08-02145-5
  5. [5] F. Boyer and F. Hubert. Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities. SIAM J. Numer. Anal., 46, 2008.10.1137/060666196
  6. [6] F. Boyer, F. Hubert, and S. Krell. Non-overlapping Schwarz algorithm for solving 2D m-DDFV schemes. IMA Jour. Num. Anal., 30, 2009.10.1093/imanum/drp001
  7. [7] F. Brezzi, K. Lipnikov, and V. Simoncini. A family of mimetic finite difference methods on polygonal and polyhedral meshes. Mathematical Models and Methods in Applied Sciences, 15(10):1533–1551, 2005.10.1142/S0218202505000832
  8. [8] M. Chau, C. Tauber, and P. Spitéri. Parallel Schwarz alternating methods for anisotropic diffusion of speckled medical images. Numerical Algorithms, 51(1):85–114, 2009.10.1007/s11075-009-9272-5
  9. [9] Y. Coudiere, F. Hubert, and G. Manzini. A CeVeFE DDFV scheme for discontinuous anisotropic permeability tensors. In Finite Volumes for Complex Applications VI Problems & Perspectives, pages 283–291. Springer, 2011.10.1007/978-3-642-20671-9_30
  10. [10] Y. Coudière, J.-P. Vila, and P. Villedieu. Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem. ESAIM: Mathematical Modelling and Numerical Analysis, 33(3):493–516, 1999.10.1051/m2an:1999149
  11. [11] Z. Dai, Q. Du, and B. Liu. Schwarz alternating methods for anisotropic problems with prolate spheroid boundaries. SpringerPlus, 5(1):1423, 2016.10.1186/s40064-016-3063-y500196927625977
  12. [12] K. Domelevo and P. Omnes. A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. M2AN Math. Model. Numer. Anal., 39(6):1203–1249, 2005.10.1051/m2an:2005047
  13. [13] J. Droniou, R. Eymard, and R. Herbin. Gradient schemes: Generic tools for the numerical analysis of diffusion equations. ESAIM: M2AN, 50(3):749–781, 2016.
  14. [14] O. Dubois and M. Gander. Optimized Schwarz methods for a diffusion problem with discontinuous coefficient. Numer. Alg., 1:109–144, 2015.10.1007/s11075-014-9884-2
  15. [15] R. Eymard, G. Henry, R. Herbin, F. Hubert, R. Klöfkorn, and G. Manzini. 3D benchmark on discretization schemes for anisotropic diffusion problems on general grids. In Finite Volumes for Complex Applications VI Problems & Perspectives, pages 895–930. Springer, 2011.10.1007/978-3-642-20671-9_89
  16. [16] R. Eymard and J.-M. Hérard. Finite Volumes for Complex Applications V. John Wiley & Sons, 2008.
  17. [17] D. Furihata and T. Matsuo. Discrete variational derivative method: a structure-preserving numerical method for partial differential equations. Chapman and Hall/CRC Press, 2010.10.1201/b10387
  18. [18] M. J. Gander. Optimized Schwarz Method. SIAM Journal on Numerical Analysis, 44(2):699–731, 2006.10.1137/S0036142903425409
  19. [19] M. J. Gander. Schwarz methods over the course of time. Electron. Trans. Numer. Anal, 31(5):228–255, 2008.
  20. [20] M. J. Gander and F. Kwok. Best Robin parameters for optimized Schwarz methods at cross points. SIAM Journal on Scientific Computing, 34(4):A1849–A1879, 2012.10.1137/110837218
  21. [21] M. J. Gander and F. Kwok. On the applicability of Lions’ energy estimates in the analysis of discrete optimized Schwarz methods with cross points. In Domain decomposition methods in science and engineering XX, pages 475–483. Springer, 2013.10.1007/978-3-642-35275-1_56
  22. [22] M. J. Gander and K. Santugini. Cross-points in domain decomposition methods with a finite element discretization. Electronic Transactions on Numerical Analysis, 45:219–240, 2016.
  23. [23] M. J. Gander and S. Van Criekingen. New coarse corrections for optimized restricted additive Schwarz using PETSc. In Domain decomposition methods in science and engineering XXV. Springer, 2020.10.1007/978-3-030-56750-7_56
  24. [24] L. Gerardo-Giorda and F. Nataf. Optimized Schwarz methods for unsymmetric layered problems with strongly discontinuous and anisotropic coefficients. Journal of Numerical Mathematics, 13(4):265–294, 2005.10.1515/156939505775248338
  25. [25] E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration: structure-preserving algorithms for ordinary differential equations, volume 31. Springer Science & Business Media, 2006.
  26. [26] R. Herbin and F. Hubert. Benchmark on discretization schemes for anisotropic diffusion problems on general grids. In R. Eymard and J.-M. Hérard, editors, Finite Volumes for Complex Applications V, pages 659–692. John Wiley & Sons, 2008.
  27. [27] F. Hermeline. Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes. Comput. Methods Appl. Mech. Engrg., 192(16-18):1939–1959, 2003.10.1016/S0045-7825(02)00644-8
  28. [28] J. Hyman, J. Morel, M. Shashkov, and S. Steinberg. Mimetic finite difference methods for diffusion equations. Computational Geosciences, 6(3):333–352, 2002.10.1023/A:1021282912658
  29. [29] C. Japhet, Y. Maday, and F. Nataf. A new interface cement equilibrated mortar (NICEM) method with Robin interface conditions: the P1 finite element case. Mathematical Models and Methods in Applied Sciences, 23(12):2253–2292, 2013.
  30. [30] C. Japhet, Y. Maday, and F. Nataf. A new interface cement equilibrated mortar method with Ventcel conditions. In Domain Decomposition Methods in Science and Engineering XXI, pages 377–385. Springer, 2014.10.1007/978-3-319-05789-7_35
  31. [31] T. Kashiwabara, C. M. Colciago, L. Dedè, and A. Quarteroni. Well-posedness, regularity, and convergence analysis of the finite element approximation of a generalized Robin boundary value problem. SIAM Journal on Numerical Analysis, 53(1):105–126, 2015.10.1137/140954477
  32. [32] Y. A. Kuznetsov, O. Boiarkine, I. Kapyrin, and N. Yavich. Numerical analysis of a two-level preconditioner for the diffusion equation with an anisotropic diffusion tensor. Russian Journal of Numerical Analysis and Mathematical Modelling, 22(4):377–391, 2007.10.1515/rnam.2007.018
  33. [33] S. Loisel. Condition number estimates for the nonoverlapping optimized Schwarz method and the 2-Lagrange multiplier method for general domains and cross points. SIAM Journal on Numerical Analysis, 51(6):3062–3083, 2013.10.1137/100803316
  34. [34] F. Nataf. A Schwarz additive method with high order interface conditions and nonoverlapping subdomains. ESAIM: Mathematical Modelling and Numerical Analysis, 32(1):107–116, 1998.10.1051/m2an/1998320101071
  35. [35] T. H. Ong and T.-T.-P. Hoang. Optimized Schwarz and finite element cell-centered method for heterogeneous anisotropic diffusion problems. Applied Numerical Mathematics, 151:380–401, 2020.10.1016/j.apnum.2020.01.009
  36. [36] L. F. Pavarino and S. Scacchi. Multilevel additive Schwarz preconditioners for the Bidomain reaction-diffusion system. SIAM Journal on Scientific Computing, 31(1):420–443, 2008.10.1137/070706148
  37. [37] J. Szeftel. Calcul pseudo-différentiel et para-différentiel pour l’étude des conditions aux limites absorbantes et des propriétés qualitatives des EDP non linéaires. PhD thesis, Université Paris 13, France, 2004.
Language: English
Page range: 182 - 213
Submitted on: Feb 16, 2020
Accepted on: Nov 25, 2020
Published on: Dec 28, 2020
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2020 Martin J. Gander, Laurence Halpern, Florence Hubert, Stella Krell, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.