References
- [1] B. Andreianov, F. Boyer, and F. Hubert. Discrete duality finite volume schemes for Leray-Lions type elliptic problems on general 2D-meshes. Num. Meth. for PDEs, 23(1):145–195, 2007.10.1002/num.20170
- [2] B. Andreianov, F. Hubert, and S. Krell. Benchmark 3D: a version of the DDFV scheme with cell/vertex unknowns on general meshes. In Finite Volumes for Complex Applications VI Problems & Perspectives, pages 937–948. Springer, 2011.10.1007/978-3-642-20671-9_91
- [3] D. N. Arnold, R. S. Falk, and R. Winther. Finite element exterior calculus, homological techniques, and applications. Acta numerica, 15:1–155, 2006.10.1017/S0962492906210018
- [4] D. Bennequin, M. J. Gander, and L. Halpern. A homographic best approximation problem with application to optimized Schwarz waveform relaxation. Mathematics of Computation, 78(265):185–223, 2009.10.1090/S0025-5718-08-02145-5
- [5] F. Boyer and F. Hubert. Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities. SIAM J. Numer. Anal., 46, 2008.10.1137/060666196
- [6] F. Boyer, F. Hubert, and S. Krell. Non-overlapping Schwarz algorithm for solving 2D m-DDFV schemes. IMA Jour. Num. Anal., 30, 2009.10.1093/imanum/drp001
- [7] F. Brezzi, K. Lipnikov, and V. Simoncini. A family of mimetic finite difference methods on polygonal and polyhedral meshes. Mathematical Models and Methods in Applied Sciences, 15(10):1533–1551, 2005.10.1142/S0218202505000832
- [8] M. Chau, C. Tauber, and P. Spitéri. Parallel Schwarz alternating methods for anisotropic diffusion of speckled medical images. Numerical Algorithms, 51(1):85–114, 2009.10.1007/s11075-009-9272-5
- [9] Y. Coudiere, F. Hubert, and G. Manzini. A CeVeFE DDFV scheme for discontinuous anisotropic permeability tensors. In Finite Volumes for Complex Applications VI Problems & Perspectives, pages 283–291. Springer, 2011.10.1007/978-3-642-20671-9_30
- [10] Y. Coudière, J.-P. Vila, and P. Villedieu. Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem. ESAIM: Mathematical Modelling and Numerical Analysis, 33(3):493–516, 1999.10.1051/m2an:1999149
- [11] Z. Dai, Q. Du, and B. Liu. Schwarz alternating methods for anisotropic problems with prolate spheroid boundaries. SpringerPlus, 5(1):1423, 2016.10.1186/s40064-016-3063-y500196927625977
- [12] K. Domelevo and P. Omnes. A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. M2AN Math. Model. Numer. Anal., 39(6):1203–1249, 2005.10.1051/m2an:2005047
- [13] J. Droniou, R. Eymard, and R. Herbin. Gradient schemes: Generic tools for the numerical analysis of diffusion equations. ESAIM: M2AN, 50(3):749–781, 2016.
- [14] O. Dubois and M. Gander. Optimized Schwarz methods for a diffusion problem with discontinuous coefficient. Numer. Alg., 1:109–144, 2015.10.1007/s11075-014-9884-2
- [15] R. Eymard, G. Henry, R. Herbin, F. Hubert, R. Klöfkorn, and G. Manzini. 3D benchmark on discretization schemes for anisotropic diffusion problems on general grids. In Finite Volumes for Complex Applications VI Problems & Perspectives, pages 895–930. Springer, 2011.10.1007/978-3-642-20671-9_89
- [16] R. Eymard and J.-M. Hérard. Finite Volumes for Complex Applications V. John Wiley & Sons, 2008.
- [17] D. Furihata and T. Matsuo. Discrete variational derivative method: a structure-preserving numerical method for partial differential equations. Chapman and Hall/CRC Press, 2010.10.1201/b10387
- [18] M. J. Gander. Optimized Schwarz Method. SIAM Journal on Numerical Analysis, 44(2):699–731, 2006.10.1137/S0036142903425409
- [19] M. J. Gander. Schwarz methods over the course of time. Electron. Trans. Numer. Anal, 31(5):228–255, 2008.
- [20] M. J. Gander and F. Kwok. Best Robin parameters for optimized Schwarz methods at cross points. SIAM Journal on Scientific Computing, 34(4):A1849–A1879, 2012.10.1137/110837218
- [21] M. J. Gander and F. Kwok. On the applicability of Lions’ energy estimates in the analysis of discrete optimized Schwarz methods with cross points. In Domain decomposition methods in science and engineering XX, pages 475–483. Springer, 2013.10.1007/978-3-642-35275-1_56
- [22] M. J. Gander and K. Santugini. Cross-points in domain decomposition methods with a finite element discretization. Electronic Transactions on Numerical Analysis, 45:219–240, 2016.
- [23] M. J. Gander and S. Van Criekingen. New coarse corrections for optimized restricted additive Schwarz using PETSc. In Domain decomposition methods in science and engineering XXV. Springer, 2020.10.1007/978-3-030-56750-7_56
- [24] L. Gerardo-Giorda and F. Nataf. Optimized Schwarz methods for unsymmetric layered problems with strongly discontinuous and anisotropic coefficients. Journal of Numerical Mathematics, 13(4):265–294, 2005.10.1515/156939505775248338
- [25] E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration: structure-preserving algorithms for ordinary differential equations, volume 31. Springer Science & Business Media, 2006.
- [26] R. Herbin and F. Hubert. Benchmark on discretization schemes for anisotropic diffusion problems on general grids. In R. Eymard and J.-M. Hérard, editors, Finite Volumes for Complex Applications V, pages 659–692. John Wiley & Sons, 2008.
- [27] F. Hermeline. Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes. Comput. Methods Appl. Mech. Engrg., 192(16-18):1939–1959, 2003.10.1016/S0045-7825(02)00644-8
- [28] J. Hyman, J. Morel, M. Shashkov, and S. Steinberg. Mimetic finite difference methods for diffusion equations. Computational Geosciences, 6(3):333–352, 2002.10.1023/A:1021282912658
- [29] C. Japhet, Y. Maday, and F. Nataf. A new interface cement equilibrated mortar (NICEM) method with Robin interface conditions: the P1 finite element case. Mathematical Models and Methods in Applied Sciences, 23(12):2253–2292, 2013.
- [30] C. Japhet, Y. Maday, and F. Nataf. A new interface cement equilibrated mortar method with Ventcel conditions. In Domain Decomposition Methods in Science and Engineering XXI, pages 377–385. Springer, 2014.10.1007/978-3-319-05789-7_35
- [31] T. Kashiwabara, C. M. Colciago, L. Dedè, and A. Quarteroni. Well-posedness, regularity, and convergence analysis of the finite element approximation of a generalized Robin boundary value problem. SIAM Journal on Numerical Analysis, 53(1):105–126, 2015.10.1137/140954477
- [32] Y. A. Kuznetsov, O. Boiarkine, I. Kapyrin, and N. Yavich. Numerical analysis of a two-level preconditioner for the diffusion equation with an anisotropic diffusion tensor. Russian Journal of Numerical Analysis and Mathematical Modelling, 22(4):377–391, 2007.10.1515/rnam.2007.018
- [33] S. Loisel. Condition number estimates for the nonoverlapping optimized Schwarz method and the 2-Lagrange multiplier method for general domains and cross points. SIAM Journal on Numerical Analysis, 51(6):3062–3083, 2013.10.1137/100803316
- [34] F. Nataf. A Schwarz additive method with high order interface conditions and nonoverlapping subdomains. ESAIM: Mathematical Modelling and Numerical Analysis, 32(1):107–116, 1998.10.1051/m2an/1998320101071
- [35] T. H. Ong and T.-T.-P. Hoang. Optimized Schwarz and finite element cell-centered method for heterogeneous anisotropic diffusion problems. Applied Numerical Mathematics, 151:380–401, 2020.10.1016/j.apnum.2020.01.009
- [36] L. F. Pavarino and S. Scacchi. Multilevel additive Schwarz preconditioners for the Bidomain reaction-diffusion system. SIAM Journal on Scientific Computing, 31(1):420–443, 2008.10.1137/070706148
- [37] J. Szeftel. Calcul pseudo-différentiel et para-différentiel pour l’étude des conditions aux limites absorbantes et des propriétés qualitatives des EDP non linéaires. PhD thesis, Université Paris 13, France, 2004.