Have a personal or library account? Click to login
Complete Approximations by Multivariate Generalized Gauss-Weierstrass Singular Integrals Cover

Complete Approximations by Multivariate Generalized Gauss-Weierstrass Singular Integrals

Open Access
|Dec 2020

References

  1. [1] G.A. Anastassiou, Rate of convergence of non-positive linear convolution type operators. A sharp inequality, J. Math. Anal. and Appl., 142 (1989), 441-451.10.1016/0022-247X(89)90013-9
  2. [2] G.A. Anastassiou, Moments in Probability and Approximation Theory, Pitman Research Notes in Math., Vol. 287, Longman Sci. & Tech., Harlow, U.K., 1993.
  3. [3] G.A. Anastassiou, Approximation by Multivariate Singular Integrals, Springer, New York, 2011.10.1007/978-1-4614-0589-4
  4. [4] G. Anastassiou and S. Gal, Approximation Theory, Birkhaüser, Boston, Basel, Berlin, 2000.10.1007/978-1-4612-1360-4
  5. [5] G. Anastassiou and R. Mezei, Uniform convergence with rates of smooth Gauss-Weierstrass singular integral operators, Applicable Analysis, 88, 7 (2009), 1015-1037.
  6. [6] G.A. Anastassiou, R.A. Mezei, Lpconvergence with rates of smooth Gauss-Weierstrass singular operators, Nonlinear Studies, 17 (2010), no. 4, 373-386.
  7. [7] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series and Products, Eighth Edition, Elsevier, Amsterdam, New York, 2015.
  8. [8] R.A. DeVore and G.G. Lorentz, Constructive Approximation, Springer-Verlag, Vol. 303, Berlin, New York, 1993.10.1007/978-3-662-02888-9_10
Language: English
Page range: 134 - 172
Submitted on: Oct 10, 2020
Accepted on: Nov 25, 2020
Published on: Dec 14, 2020
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2020 George A. Anastassiou, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.