Have a personal or library account? Click to login
Domination and Kwapień’s factorization theorems for positive Cohen p–nuclear m–linear operators Cover

Domination and Kwapień’s factorization theorems for positive Cohen p–nuclear m–linear operators

Open Access
|Dec 2020

References

  1. [1] Achour, D., Alouani, A., On multilinear generalizations of the concept of nuclear operators. Colloquium Mathematicae 120(1) (2010), 85 – 102.10.4064/cm120-1-7
  2. [2] Achour, D., Belacel, A., Domination and factorization theorems for positive strongly p–summing operators. Positivity. 18(2014), 785 – 804.
  3. [3] Achour, D., Mezrag, L., On the Cohen strongly p–summing multilinear operators. J. Math. Anal. Appl. 327(2007), 550 – 563.
  4. [4] Blasco, O., A class of operators from a Banach lattice into a Banach space. Collect. Math. 37(1)(1986), 13 – 22.
  5. [5] Blasco, O., Positive p–summing operators on Lp–spaces. Proc. Am. Math. Soc. 100(1987), 275 – 281.
  6. [6] Botelho, G., Pellegrino, D.M., Rueda, P., On composition ideals of multilinear mappings and homogeneous polynomials, Publ. Res. Inst. Math. Sci. 43(2007), 1139 – 1155.10.2977/prims/1201012383
  7. [7] Bougoutaia, A., Belacel. A., Cohen positive strongly p–summing and p–convex multilinear operators. Positivity. 23(2019), 379 – 395.
  8. [8] Bu, Q., Buskes, G., The Radon-Nikodym property for tensor products of Banach lattices. Positivity.10(2)(2006), 365 – 390.10.1007/s11117-005-0025-y
  9. [9] Bu, Q., Buskes, G., Polynomials on Banach lattices and positive tensor products, J. Math. Anal. Appl. 388(2012), 845 – 862.10.1016/j.jmaa.2011.10.001
  10. [10] Bu, Q., Labuschagne, C.A., Positive Multiple Summing and Concave Multilinear Operators on Banach Lattices. Mediterr. J. Math. 12(2015), 77 – 87.
  11. [11] Bu, Q., Shi, Z., On Cohen almost summing multilinear operators. J. Math. Anal. Appl. 401(2013), 174 – 181.
  12. [12] Çaliskan, E., Pellegrino, D.M., On the multilinear generalizations of the concept of absolutely summing operators, Rocky Mountain J. Math. 37(2007), 1137 – 1152.10.1216/rmjm/1187453101
  13. [13] Cohen, J.S., Absolutely p–summing, p–nulear operators and thier conjugates. Math.Ann. 201(1973), 177 – 200.
  14. [14] Diestel, J., Jarchow, H., Tonge, A., Absolutely Summing Operators, Cambridge University Press, 1995.10.1017/CBO9780511526138
  15. [15] Fremlin. D.H., Tensor products of Archimedean vector lattices, Amer. J. Math. 94(1972), 777 – 798.10.2307/2373758
  16. [16] Fremlin. D.H., Tensor products of Banach lattices, Math. Ann. 211(1974), 87 – 106.10.1007/BF01344164
  17. [17] Labuschagne, C.C.A., Riesz reasonable cross norms on tensor products of Banach lattices. Quaest. Math. 27(2004), 243 – 266.
  18. [18] Lindenstrauss, J., Tzafriri, L., Classical Banach Spaces I and II. Springer, Berlin (1996)10.1007/978-3-540-37732-0
  19. [19] Matos, M.C., Fully absolutely summing and Hilbert–Schmidt multilinear mappings. Collect. Math. 54 (2) (2003), 111 – 136.
  20. [20] Matos, M.C., Pellegrino, D.M., Fully summing mappings between Banach spaces, Studia Math. 178(2007), 47 – 61.10.4064/sm178-1-3
  21. [21] Mezrag, L., Saadi, K., Inclusion theorems for Cohen strongly summing multilinear operators. Bull. Belg. Math. Soc. Simon Stevin. 16(2009), 1 – 11.
  22. [22] Pellegrino, D., Santos, J., Seoane-Sepúlveda, J., Some techniques on nonlinear analysis and applications, Adv. Math. 229(2012),1235 – 1265.10.1016/j.aim.2011.09.014
  23. [23] Schaefer, H.H., Banach Lattices and Positive Operators. Springer, Berlin (1974).10.1007/978-3-642-65970-6
  24. [24] Zhukova, O.I., On modifications of the classes of p–nuclear, p–summing and p–integral operators, Sib. Math. J. 30(5)(1998), 894 – 907.10.1007/BF02672911
Language: English
Page range: 100 - 115
Submitted on: Aug 8, 2020
Accepted on: Nov 18, 2020
Published on: Dec 14, 2020
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2020 Amar Bougoutaia, Amar Belacel, Halima Hamdi, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.