Have a personal or library account? Click to login
On the quasi-Fredholm and Saphar spectrum of strongly continuous Cosine operator function Cover

On the quasi-Fredholm and Saphar spectrum of strongly continuous Cosine operator function

By: Hamid Boua  
Open Access
|Nov 2020

References

  1. [1] W. Arendt, C. J. K. Batty, M. Hieber, and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems, Monographs in Mathematics, 96, Birkhšauser-Springer, Basel, 2011.10.1007/978-3-0348-0087-7
  2. [2] H. O. Fattorini, Ordinary differential equations in linear topological space, II, J. Differential Equations 6 (1969), 50-70.10.1016/0022-0396(69)90117-X
  3. [3] J.P. Labrousse, Inverses gĂ©nĂ©ralisĂ©s d’opĂ©rateurs non-bornĂ©s, Proc. Amer. Math. Soc. 115(1992), 125-129.10.1090/S0002-9939-1992-1079701-6
  4. [4] J.P. Labrousse, Les opérateurs quasi-Fredholm: une généralisation des opérateurs semi-Fredholm, Rend. Circ. Math. Palermo (2), XXIX (1980) 161-258.10.1007/BF02849344
  5. [5] D. Lutz, Strongly continuous operator cosine functions, Functional Analysis (Dubrovnik, 1981). (Lecture Notes in Math., Vol. 948), Springer, Berlin-New York, 1982, 73-97.10.1007/BFb0069842
  6. [6] M. Mbekhta, A. Ouahab, Opérateur s-régulier dans un espace de Banach et théorie spectrale, Acta Sci. Math. (Szeged) 59 (1994), 525-543.
  7. [7] V. MĂŒller, Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras, 2nd edition. Oper. Theory Advances and Applications, vol. 139 (2007).
  8. [8] B. Nagy, On cosine operator functions on Banach spaces, Acta Sci. Math. Szeged 36 (1974), 281-290.
  9. [9] A. Tajmouati, M. Amouchb, M. KarmouniaSymmetric Difference Between Pseudo B-Fredholm Spectrum and Spectra Originated from Fredholm Theory, Filomat 31(16)(2017), 5057-5064.10.2298/FIL1716057T
  10. [10] C. C. Travis and G. F. Webb, Cosine families and abstract nonlinear second order differential equations, Acta Math. Acad. Sci. Hungar. 32 (1978),75-96.10.1007/BF01902205
  11. [11] H. O. Fattorini, Uniformly bounded cosine functions in Hilbert spaces, Indiana Univ. Math. J. 20 (1970), 411-425.10.1512/iumj.1971.20.20035
  12. [12] S. Kurepa, cosine functkmal equation in Hilbert space, Canad. J. Math., 12 (1960), 45-49.10.4153/CJM-1960-005-7
DOI: https://doi.org/10.2478/mjpaa-2021-0008 | Journal eISSN: 2351-8227
Language: English
Page range: 80 - 87
Submitted on: Aug 8, 2020
Accepted on: Nov 8, 2020
Published on: Nov 22, 2020
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2020 Hamid Boua, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.